Advertisement

Wideband Terahertz Sensing And Spectroscopy with Electronic Sources and Detectors

  • D. W. van der Weide
Chapter
Part of the NATO Science Series book series (NAII, volume 27)

Abstract

A growing variety of reflection and transmission spectroscopy in the 1- 1000 GHz regime can be done with wideband all-electronic terahertz (THz) spectrometers. We have measured gas absorption spectra and energetic material reflection spectra with such instruments using phase-locked microwave sources to drive picosecond GaAs nonlinear transmission lines, enabling measurement of both wideband spectra and single lines with Hertz- level precision, a new mode of operation not readily available with optoelectronic THz techniques. We take two approaches to coherent measurements: (1) spatially combining the freely propagating beams from two coherent picosecond pulse generators (which have discrete spectra ranging from ~ 6 to < 500 GHz), or (2) using a more conventional coherent source/detector arrangement with sampling detectors. The first method employs a dual-source interferometer (DSI) modulating each harmonic of one source with a precisely-offset harmonic from the other source—both sources being driven with stable phase-locked synthesizers—the resultant beat frequency can be low enough for detection by a standard composite bolometer. Room-temperature detection possibilities for the DSI include antenna-coupled Schottky diodes. Finally, we have recently introduced a reflectometer based on serrodyne modulation of a linearized delay line, using a technique that is process-compatible with pulse generator circuits. Keywords: wideband electronic terahertz techniques, gas spectroscopy, reflection spectroscopy, nonlinear transmission lines, samplers, coherent measurements, dual source interferometer

Keywords

Apply Physic Letter Optical Society ofAmerica Coherent Measurement Journal Ofthe Optical Society ofAmerica Wideband Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    van der Weide, D.W., Murakowski, J., and Keilmann, F. (2000) Gas-absorption spectroscopy with electronic terahertz techniques, IEEE Transactions on Microwave Theory and Techniques 48, 740–743.CrossRefGoogle Scholar
  2. 2.
    Eisele, H., Rydberg, A., and Haddad, G. (2000) Recent advances in the performance of InP Gunn devices and GaAs TUNNETT diodes for the 100-300-GHz frequency range and above, IEEE Transactions on Microwave Theory and Techniques 48, 626–631.CrossRefGoogle Scholar
  3. 3.
    Chantry, G.W. (1984) Long-wave optics, Academic Press, London.Google Scholar
  4. 4.
    Afsar, M.N. (1984) Dielectric measurements of millimeter-wave materials, IEEE Transactions on Microwave Theory and Techniques 32, 1598–1609.CrossRefGoogle Scholar
  5. 5.
    van der Weide, D.W. and Keilmann, F. (1996) Picosecond dual-source interferometer extending Fourer-transform spectrometer to microwave regime, 1996IEEEMTT-S International Microwave Symposium Digest, IEEE, New York, NY, USA, pp. 1731–1734.Google Scholar
  6. 6.
    van der Weide, D.W. and Keilmann, F. (1998) Coherent periodically pulsed radiation spectrometer, United States patent 5, 748, 309.Google Scholar
  7. 7.
    van der Weide, D.W., Bostak, J.S., Auld, B.A., and Bloom, D.M. (1991) All-electronic free-space pulse generation and detection, Electronics Letters 27, 1412–1413.CrossRefGoogle Scholar
  8. 8.
    van der Weide, D.W., Bostak, J.S., Auld, B.A., and Bloom, D.M. (1993) All-electronic generation of 880 fs, 3.5 V Shockwaves and their application to a 3 THz free-space signal generation system, Applied Physics Letters 62, 22–24.CrossRefGoogle Scholar
  9. 9.
    Bostak, J.S., van der Weide, D.W., Bloom, D.M., Auld, B.A., and Özbay, E. (1994) All-electronic terahertz spectroscopy system with terahertz free-space pulses, Journal of the Optical Society of America B 11, 2561–2565.CrossRefGoogle Scholar
  10. 10.
    Rodwell, M.J.W., Kamegawa, M., Yu, R., Case, M., Carman, E., and Giboney, K.S. (1991) GaAs nonlinear transmission lines for picosecond pulse generation and millimeter-wave sampling, IEEE Transactions on Microwave Theory and Techniques 39, 1194–1204.CrossRefGoogle Scholar
  11. 11.
    Rodwell, M.J.W., Allen, S.T., Yu, R.Y., Case, M.G., Bhattacharya, U., Reddy, M., Carman, E., Kamegawa, M., Konishi, Y., Pusl, J., Pullela, R., and Esch, J. (1994) Active and nonlinear wave propagation devices in ultrafast electronics and optoelectronics (and prolog), Proceedings of the IEEE 82, 1035–1059.CrossRefGoogle Scholar
  12. 12.
    van der Weide, D.W. (1994) Delta-doped Schottky diode nonlinear transmission lines for 480-fs, 3.5-V transients, Applied Physics Letters 65, 881–883.CrossRefGoogle Scholar
  13. 13.
    van der Weide, D.W. (1994) Planar antennas for all-electronic THz systems, Journal of the Optical Society of America B 11, 2553–2560.CrossRefGoogle Scholar
  14. 14.
    Greene, B.I., Federici, J.F., Dykaar, D.R., Jones, R.R., and Bucksbaum, P.H. (1991) Interferometric characterization of 160 fs far-infrared light pulses, Applied Physics Utters 59, 893–895.CrossRefGoogle Scholar
  15. 15.
    Ralph, S.E. and Grischkowsky, D. (1992) THz spectroscopy and source characterization by optoelectronic interferometry, Applied Physics Letters 60, 1070–1072.CrossRefGoogle Scholar
  16. 16.
    Karadi, C., Jauhar, S., Kouwenhoven, L.P., Wald, K., Orenstein, J., and McEuen, P.L. (1994) Dynamic response of a quantum point contact, Journal of the Optical Society of America B 11, 2566–2571.CrossRefGoogle Scholar
  17. 17.
    Akkaraekthalin, P., Kee, S., and van der Weide, D.W. (1998) Distributed wideband frequency translator, 1998 IEEEMTT-S International Microwave Symposium Digest. IEEE, New York, NY, USA, pp. 1431–1434.Google Scholar
  18. 18.
    Akkaraekthalin, P., Kee, S., and van der Weide, D.W. (1998) Distributed wideband frequency translator and its use in a 1–3 GHz coherent reflectometer, IEEE Transactions on Microwave Theory and Techniques 46, 2244–2250.CrossRefGoogle Scholar
  19. 19.
    van der Weide, D.W., Murakowski, J., and Keilmann, F. (1999) Spectroscopy with electronic terahertz techniques, presented at Terahertz Spectroscopy and Applications II, Munich.Google Scholar
  20. 20.
    Mann, P. (1996) TWA disaster reopens tough security issues, Aviation Week & Space Technology, pp. 23–27.Google Scholar
  21. 21.
    Herskovitz, D. (1995) Wide, Wider, Widest, Microwave Journal 38, 26–40.Google Scholar
  22. 22.
    van Exeter, M. (1989) Terahertz time-domain spectroscopy of water vapor, Optics Letters 14,1128–1130.CrossRefGoogle Scholar
  23. 23.
    Grischkowsky, D., Keiding, S., Exeter, M.v., and Fattinger, C. (1990) Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors, Journal of the Optical Society of America B 7, 2006–2015.CrossRefGoogle Scholar
  24. 24.
    Nuss, M.C., Goossen, K.W., Gordon, J.P., Mankiewich, P.M., O’Malley, M.L., and Bhusan, M. (1991) Terahertz time-domain measurement of the conductivity and superconducting band gap in niobium, Journal of Applied Physics 70, 2238–2241.CrossRefGoogle Scholar
  25. 25.
    Cheville, R.A. and Grischkowsky, D. (1995) Time domain terahertz impulse ranging studies, Applied Physics Utters 67, 1960–1962.CrossRefGoogle Scholar
  26. 26.
    Hu, B.B. and Nuss, M.C. (1995) Imaging with terahertz waves, Optics Utters 20, 1716–1718.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • D. W. van der Weide
    • 1
  1. 1.Department of Electrical and Computer EngineeringUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations