Skip to main content

Plasma Wave Electronics for Terahertz Applications

  • Chapter
Terahertz Sources and Systems

Part of the book series: NATO Science Series ((NAII,volume 27))

Abstract

A channel of a field effect transistor might act as a resonance cavity for the plasma waves. For micron or sub-micron gate lengths, the fundamental frequency of this cavity is in the terahertz range and can be easily tuned by changing the gate bias. The quality factor of this plasma wave resonator depends on the momentum relaxation time and on the plasma frequency determined by the device length. A short field effect transistor can be used as a basic device for resonant detection, mixing, multiplication, and even generation of terahertz radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dyakonov, M. I. and Shur, M. S. (1996) Detection, Mixing, and Frequency Multiplication of Terahertz Radiation by Two Dimensional Electronic Fluid, IEEE Transactions on Electron Devices, 43, pp. 380–387.

    Article  Google Scholar 

  2. Dyakonov, M. I. and Shur, M. S. (1993) Shallow Water Analogy for a Ballistic Field Effect Transistor. New Mechanism of Plasma Wave Generation by DC Current, Phys. Rev. Lett. 71, pp. 2465–24

    Article  Google Scholar 

  3. Chaplik, A. V. (1972), Zh. Eksp. Teor. Fiz. 62, 746 (Sov. Phys. JETP, 35, 395, (1972))

    Google Scholar 

  4. Nakayama, M. (1974) Theory of surface waves coupled to surface carriers, J. Phys. Soc. Japan, 36, pp.393–398.

    Article  Google Scholar 

  5. Allen, S. J., Jr., Tsui, D. C., and Logan, R. A. (1997) Observation of the two-dimensional plasmon in silicon inversion layers, Phys. Rev. Lett. 38, pp. 980–983.

    Article  Google Scholar 

  6. Tsui, D. C., Gornik, E., and Logan, R.A. (1980) Far infrared emission from plasma oscillations of Si inversion layers, Solid State Comm., 35, pp. 875–877.

    Article  Google Scholar 

  7. Burke, P. J., Spielman, I. B., Eisenstein, J. P., Pfeiffer, L. N., and West, K. W. (2000) High frequency conductivity of the high-mobility two-dimensional electron gas, Applied Phys. Lett. 76, pp. 745–747.

    Article  Google Scholar 

  8. Shur, M. S. (1996) Introduction to Electronic Devices, John Wiley and Sons, New York p. 384.

    Google Scholar 

  9. Landau, L. D. and Lifshitz, E. M. (1966) Fluid Mechanics, Pergamon, New York.

    Google Scholar 

  10. Weikle, R., Lu, J., Shur, M. S., and Dyakonov, M. I. (1996) Detection of Microwave Radiation by Electronic Fluid in High Electron mobility Transistors, Electronics Letters, 32, pp. 2148–2149.

    Article  Google Scholar 

  11. Lü, J.-Q., Shur, M. S., Hesler, J. L., Sun, L., and Weikle, R. (1998) Terahertz Detector Utilizing Two-Dimensional Electronic Fluid, IEEE Electron Device Letters, 19, pp. 373–375.

    Article  Google Scholar 

  12. Shur, M. S. and Lii, J.-Q. (2000) Terahertz Sources and Detectors Using Two Dimensional Electronic Fluid in High Electron Mobility Transistors, IEEE Transactions on Microwave Theory and Techniques, 48, pp. 750–755.

    Article  Google Scholar 

  13. Fjeldly, T., Ytterdal, T., and Shur, M. S. (1998) Introduction to Device and Circuit odeling for VLSI, John Wiley and Sons, New York.

    Google Scholar 

  14. A student version of AIM-Spice and of FET parameter extraction software can be downloaded from http://www.aimspice.com/

    Google Scholar 

  15. Lü J.-Q. and Shur, M.S. unpublished

    Google Scholar 

  16. Cheremisin, M. (1999) Ph. D. Thesis, Etude d’nstabilites un liquide bidimensionnel d’électrons dans un transistor a effect de champ, University of Montpellier

    Google Scholar 

  17. Dyakonov, M. I. and Shur, M. S. (1996) Plasma Wave Electronics: Novel Terahertz Devices using Two Dimensional Electron Fluid, Special Issue on Future Directions in Device Science and Technologies, IEEE Transactions on Electron Devices, 43, pp. 1640–1646.

    Article  Google Scholar 

  18. Fletcher, N. H. and Rossing, T. D. (1991) The Physics of Musical Instruments, Springer-Verlag, New York.

    Book  Google Scholar 

  19. Dyakonov, M. I. and Shur, M. S.(1995) Two Dimensional Electronic Flute, Applied Physics Letters 67, pp. 1137–1139.

    Article  Google Scholar 

  20. Dmitriev, A. P., Furman, A. S., and Kachorovskii, V. Yu.(1996) Nonlinear theory of the current instability in a ballistic field-effect transistor, Phys. Rev. B54, pp. 14020–14025.

    Google Scholar 

  21. Dmitriev, A. P., Kachorovskii, V. Yu., Furman, A. S.,and Samsonidze, G. G. (1997) Numerical study of the current instability in a two-dimensional electron fluid, Phys. Rev. B55, pp. 10319–10325.

    Google Scholar 

  22. Crowne, F. J. (1997) Contact boundary conditions and Dyakonov-Shur instability in high electron mobility transistors, J. Appl. Phys. 82, pp 1242–1254.

    Article  Google Scholar 

  23. Crowne, F. J. (2000) Contact boundary conditions and Dyakonov-Shur instability in high electron mobility transistors, J. Appl. Phys. 87, pp 8056–8063.

    Article  Google Scholar 

  24. Samsonidze, G., Rudin, S., and Shur, M. S. (1998) Large Signal Theory of Plasma Wave Electronics Terahertz Detectors, 1998 IEEE Sixth International Conference on Terahertz Electronics Proceedings, University of Leeds, IEEE Catalog Number: 98EX171, P. Harrison, Editor, pp. 231–233.

    Google Scholar 

  25. Ryzhii, V., Khmyrova, I., and Shur, M. S. (2000) Resonant detection and frequency multiplication of terahertz radiation utilizing plasma waves in resonant-tunneling transistors, J. Appl. Phys., submitted

    Google Scholar 

  26. Ryzhii V. and Shur, M. S. Terahertz radiation utilizing plasma waves in resonanttunneling transistors, J. Appl. Phys., accepted for publication

    Google Scholar 

  27. Shur, M. S., and Ryzhii, V. Emerging solid state terahertz electronics in Lippens, D. (ed.) Terahertz Systems and Sources, Kluwer, The Netherlands

    Google Scholar 

  28. Ryzhii, V., and Shur, M. S., Plasma Instability and nonlinear terahertz oscillations in resonant-tunneling structures, unpublished

    Google Scholar 

  29. Dmitriev, A., Kachorovskii, V., Shur, M. S., and Stroscio, M. (2000) Electron Runaway and Negative Differential Mobility in Two Dimensional Electron or Hole Gas in Elementary Semiconductors, Solid State Comm., 113, pp. 565–568.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Dyakonov, M., Shur, M.S. (2001). Plasma Wave Electronics for Terahertz Applications. In: Miles, R.E., Harrison, P., Lippens, D. (eds) Terahertz Sources and Systems. NATO Science Series, vol 27. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0824-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0824-2_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-7097-0

  • Online ISBN: 978-94-010-0824-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics