Advertisement

Projection Operator Method for Quantum Groups

  • V. N. Tolstoy
Part of the NATO Science Series book series (NAII, volume 30)

Abstract

At present there can be no doubt to say that the quantum group theory has been one of the most important, modern and rapidly developing directions of mathematics and mathematical physics in the end of the twentieth century. Although initially (in the early 1980’s) the quantum group theory was formulated for solving problems in the theory of integrable systems and statistical physics, later the surprising connection of this theory with many branches of mathematics, and the theoretical and mathematical physics was discovered. Today the quantum group theory is connected with such mathematical fields as special functions (especially, with (q-orthogonal polynomials and basic hypergeometric series), the theory of difference and differential equations, combinatorial analysis and representation theory, matrix and operator algebras, noncommutative geometry, knot theory, topology, category theory and so on. From point of view of the mathematical physics there exists interconnection of the quantum group theory with the quantum inverse scattering method, conformai and quantum fields theory and so on. It is expected that the quantum groups will provide deeper understanding of concept of symmetry in physics.

Keywords

Quantum Group Simple Root Basic Hypergeometric Series Reduction Chain General Projection Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. M. Asherova, Yu. F. Smirnov and V. N. Tolstoy, Projection operators for the simple Lie groups, (Russian) Teoret. Mat. Fiz. 8 (1971), 255–271.MATHGoogle Scholar
  2. 2.
    R. M. Asherova, Yu. F. Smirnov and V. N. Tolstoy, A description of some class of projection operators for semisimple complex Lie algebras, (Russian) Matem. Zametki 26 (1979), 15–25.MATHGoogle Scholar
  3. 3.
    R. M. Asherova, Yu. F. Smirnov and V. N. Tolstoy, Projection operators for the simple Lie groups. II. General scheme for construction of lowering operators. The case of the group SU(n), (Russian) Teoret. Mat. Fiz. 15 (1973), 107–119.Google Scholar
  4. 4.
    R. M. Asherova, Yu. F. Smirnov and V. N. Tolstoy, Weyl q-coefficients for Uq(3) and Racah q-coefficients, for SUq(2), Phys. Atomic Nuclei 59 (1996), 1795–1807.MathSciNetGoogle Scholar
  5. 5.
    R. M. Asherova, Yu. F. Smirnov and V. N. Tolstoy, On the general analytical formula for the SU q(3) -Clebsch-Gordan coefficients, Proc. of Group theoretical methods in physics (Dubna, 2000), (Russian) Yad. Fiz.; math.QA/0103187 200Google Scholar
  6. 6.
    H.-D. Doebner and V. N. Tolstoy, V. K. Dobrev, eds., World Sci. Publishing, River Edge, NJ, 1993, pp. 229–2Google Scholar
  7. 7.
    V. G. Drinfeld, Quantum groups, Proc. ICM-86 (Berkely USA) Vol. 1, Amer. Math. Soc., 1987, pp. 798–820.Google Scholar
  8. 8.
    M. Jimbo, A q-analogue of U q(gl(n+l)), Hecke algebras and Yang-Baxter equation, Lett. Math. Phys. 11 (1986), 247–252.MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    V. G. Kac, Lie superalgebras, Advances in Math. 26 (1977), 8–96.MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    S. M. Khoroshkin, J. Lukierski and V. N. Tolstoy, Quantum affine (super)algebras U q(A 1(1)) and U q(C(2)(2)); math.QA/0005145, 2000.Google Scholar
  11. 11.
    S. M. Khoroshkin and V. N. Tolstoy, Universal R-matrix for quantized (super) algebras, Commun. Math. Phys. 141 (1991), 599–617.MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    S. M. Khoroshkin and V. N. Tolstoy, Extremal projector and universal R-matrix for quantum contragredient Lie (super)algebras, in: “Quantum groups and related topics”, R. Gelerak et al., eds., Kluwer Acad. Publ., Dordrecht, 1992.Google Scholar
  13. 13.
    S. M. Khoroshkin and V. N. Tolstoy, The uniqueness theorem for the universal R-matrix, Lett. Math. Phys. 24 (1992), 231–244.MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    S. M. Khoroshkin and V. N. Tolstoy, The Cartan-Weyl basis and the universal R-matrix for quantum Kac-Moody algebras and superalgebras, in: “Quantum Symmetries” (Clausthal 1991), H.-D. Doebner and V. K. Dobrev, eds., World Sci. Publishing, River Edge, NJ, 1993, pp. 336–351.Google Scholar
  15. 15.
    S. M. Khoroshkin and V. N. Tolstoy, Twisting of quantum (super)algebras. Connection of Drinfeld’s and Cartan-Weyl realizations for quantum affine algebras, MPIM preprint, MPI/94-23, Bonn, 1994; hep-th/9404036.Google Scholar
  16. 16.
    A. N. Kirillov and N. Yu. Reshetikhin, Representations of the algebra u q(2), q-orthogonal polynomials and invariants of links, LOMI Preprint E-9-88, Leningrad, 1988.Google Scholar
  17. 17.
    G. Lusztig, Canonical bases arising from quantized enveloping algebras, J. Amer. Math. Soc. 3 (1990), 447–498.MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Z. Pluhar, Yu. F. Smirnov and V. N. Tolstoy, A novel approach to the SU(3) symmetry calculus, Charles University preprint, Prague (Russian), 1981.Google Scholar
  19. 19.
    Z. Pluhar, Yu. F. Smirnov and V. N. Tolstoy, Clebsch-Gordan coefficients of SU(3) with simple symmetry properties, J. Phys. A: Math. Gen. 19 (1986), 21–28.MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Yu. F. Smirnov, V. N. Tolstoy and Yu. I. Kharitonov, Method of the projection operators and q-analog of the quantum angular momentum theory. Clebsch-Gordan coefficients and irreducible tensor operators, Soviet J. Nuclear Phys. 53 (1991), 593–605.MathSciNetGoogle Scholar
  21. 21.
    Yu. F. Smirnov, V. N. Tolstoy and Yu. I. Kharitonov, Projection-operator method and the q-analog of the quantum theory of angular momentum. Racah coefficients, 3 j-and 6j-symbols, and their symmetry properties, Soviet J. Nuclear Phys.53 (1991), 1068–1086MathSciNetGoogle Scholar
  22. 22.
    Yu. F. Smirnov, V. N. Tolstoy and Yu. I. Kharitonov, Projection operator method and q-analog of angular momentum theory, in: “Symmetry in Science” V, Plenum, New York, 1991, pp. 487–518.Google Scholar
  23. 23.
    Yu. F. Smirnov, V. N. Tolstoy and Yu. I. Kharitonov, Tree technique and irreducible tensor operators for the su q(2) quantum algebra. 9j-symbols, Soviet J. Nuclear Phys. 55 (1992), 1599–1604.MathSciNetGoogle Scholar
  24. 24.
    V. N. Tolstoy, Extremal projectors for reductive classical Lie superalgebras with nondegenerate generalized Killing form, (Russian) Uspekhi Mat. Nauk 40 (1985), 225–226.Google Scholar
  25. 25.
    V. N. Tolstoy, Extremal projectors for contragredient Lie algebras and superalgebras of finite growth, Russian Math. Surveys 44 (1989), 257–258.MathSciNetCrossRefGoogle Scholar
  26. 26.
    V. N. Tolstoy, Extremal projectors for quantized Kac-Moody superalgebras and some of their applications. Lectures Notes in Phys. 370, Springer, Berlin, 1990, pp. 118–125.Google Scholar
  27. 27.
    V. N. Tolstoy, Fundamental system of the extremal projectors for sl(2), in: “Group theoretical methods in fundamental and applied physics” (Russian), Nauka, Moscow, 1988, pp. 258–259.Google Scholar
  28. 28.
    V. N. Tolstoy, Combinatorial structure of root systems for Lie (super)algebras, JINR, Dubna, 2001.Google Scholar
  29. 29.
    V. N. Tolstoy and S. M. Khoroshkin, The Universal R-matrix for quantum nontwisted affine Lie algebras, Functional Anal. Appl. 26 (1992), 69–71.CrossRefGoogle Scholar
  30. 30.
    H. Yamane, A Serre type theorem for affine Lie superalgebras and their quantized universal enveloping superalgebras, Proc. Japan. Acad. 70 (1994), 31.MathSciNetMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • V. N. Tolstoy
    • 1
  1. 1.Institute of Nuclear PhysicsMoscow State UniversityMoscowRussia

Personalised recommendations