Skip to main content

The Factorization Method, Self-Similar Potentials and Quantum Algebras

  • Chapter
Special Functions 2000: Current Perspective and Future Directions

Part of the book series: NATO Science Series ((NAII,volume 30))

Abstract

The factorization method is a convenient operator language formalism for consideration of certain spectral problems. In the simplest differential operators realization it corresponds to the Darboux transformations technique for linear ODE of the second order. In this particular case the method was developed by Schrödinger and became well known to physicists due to the connections with quantum mechanics and supersymmetry. In the theory of orthogonal polynomials its origins go back to the Christoffel’s theory of kernel polynomials, etc. Special functions are defined in this formalism as the functions associated with similarity reductions of the factorization chains.

We consider in this lecture in detail the Schrödinger equation case and review some recent developments in this field. In particular, a class of selfsimilar potentials is described whose discrete spectrum consists of a finite number of geometric progressions. Such spectra are generated by particular polynomial quantum algebras which include q-analogues of the harmonic oscillator and su(1, 1) algebras. Coherent states of these potentials are described by differential-delay equations of the pantograph type. Applications to infinite soliton systems, Ising chains, random matrices, and lattice Coulomb gases are briefly outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. J. Ablowitz and H. Segur, Solitons and the Inverse Scattering Transform, SIAM, Philadelphia, 1981.

    Book  MATH  Google Scholar 

  2. V. E. Adler, Recuttings of polygons, Punkt. Anal, i ego Pril. 27(2) (1993), 79–82.

    Google Scholar 

  3. A. A. Andrianov, N. V. Borisov, and M. V. Ioffe, Factorization method and Darboux transformation for multidimensional Hamiltonians, Theor. Math. Phys. 61 (1984), 1078–1088.

    Article  Google Scholar 

  4. A. A. Andrianov, M. V. Ioffe, and V. P. Spiridonov, Higher-derivative supersymmetry and the Witten index, Phys. Lett. A174 (1993), 273–279.

    MathSciNet  Google Scholar 

  5. M. Arik and D. D. Coon, Hilbert spaces of analytic functions and generalized coherent states, J. Math. Phys. 17 (1976), 524–527.

    Article  MathSciNet  Google Scholar 

  6. R. Askey and S. K. Suslov, The q-harmonic oscillator and the Al-Salam and Carlitz polynomials, Lett. Math. Phys. 29 (1993), 123–132.

    Article  MathSciNet  MATH  Google Scholar 

  7. R. J. Baxter, Exactly Solved Models in Statistical Mechanics, Academic Press, London, 1982.

    MATH  Google Scholar 

  8. F. J. Bureau, Differential equations with fixed critical points, in: “Painlevé Transcendents”, D. Levi and P. Winternitz, eds., NATO ASI Series, Series B; Vol. 278, Plenum Press, New York, 1990, pp. 103–123.

    Google Scholar 

  9. J. L. Burchnall and T. W. Chaundy, Commutative ordinary differential operators I & II, Proc. Lond. Math. Soc. 21 (1923), 420–440; Proc. Roy. Soc. A118 (1928), 557-583.

    Article  MathSciNet  MATH  Google Scholar 

  10. D. D. Coon, S. Yu, and S. Baker, Operator formulation of a dual multiparticle theory with nonlinear trajectories, Phys. Rev. D5 (1972), 1429–1433.

    Google Scholar 

  11. M. M. Crum, Associated Sturm-Liouville systems, Quart. J. Math. Oxford 6 (1955), 121–127.

    Article  MathSciNet  MATH  Google Scholar 

  12. G. Darboux, Leçons sur la Théorie Générale des Surfaces, Gauthier-Villars, Paris, 1889.

    MATH  Google Scholar 

  13. E. Date, M. Jimbo, M. Kashiwara, and T. Miwa, Transformation groups for soliton equations, in: “Nonlinear Integrable Systems”, World Scientific, Singapore, 1983, pp. 41–119.

    Google Scholar 

  14. P. A. Deift, Applications of a commutation formula, Duke. Math. J. 45 (1978), 267–310.

    Article  MathSciNet  MATH  Google Scholar 

  15. L. D. Faddeev, The inverse problem of the quantum scattering theory, Uspekhi Mat. Nauk (Russ. Math. Surveys) 14(4) (1959), 57–119.

    MathSciNet  MATH  Google Scholar 

  16. H. Flaschka, A commutator representation of Painlevé equations, J. Math. Phys. 21 (1980), 1016–1018.

    Article  MathSciNet  MATH  Google Scholar 

  17. P. J. Forrester, B. Jancovici, and G. Téllez, Universality in some classical Coulomb systems of restricted dimension, J. Stat. Phys. 84 (1996), 359–378.

    Article  MATH  Google Scholar 

  18. U. Frisch, and R. Bourret, Parastochastics, J. Math. Phys. 11 (1970), 364–390.

    Article  MathSciNet  MATH  Google Scholar 

  19. M. Gaudin, Une famille à une paramètre d’ensembles unitaires, Nucl. Phys. 85 (1966), 545–575.

    Article  Google Scholar 

  20. M. Gaudin, Gaz coulombien discret à une dimension, J. Phys. (France) 34 (1973), 511–522.

    Article  MathSciNet  Google Scholar 

  21. G. Gasper and M. Rahman, Basic Hypergeometric Series, Cambridge University Press, Cambridge, 1990.

    MATH  Google Scholar 

  22. L. E. Gendenshtein and I. V. Krive, Supersymmetry in quantum mechanics, Uspekhi Phys. Nauk (Sov. Phys. Uspekhi) 146 (1985), 553–590.

    Article  MathSciNet  Google Scholar 

  23. Ya. L. Geronimus, 1 On the polynomials orthogonal with respect to a given number sequence and a theorem by W. Hahn, Izv. Akad. Nauk SSSR 4 (1940), 215–228.

    MathSciNet  Google Scholar 

  24. R. Hirota, Direct methods in soliton theory, in: “Solitons”, R. K. Bullough and P. J. Caudrey, eds., Springer, Berlin, 1980.

    Google Scholar 

  25. L. Infeld, On a new treatment of some eigenvalue problems, Phys. Rev. 59 (1941), 737–747.

    Article  MathSciNet  Google Scholar 

  26. L. Infeld and T. E. Hull, The factorization method, Rev. Mod. Phys. 23 (1951), 21–68.

    Article  MathSciNet  MATH  Google Scholar 

  27. A. Iserles, On the generalized pantograph functional-differential equation, Europ. J. Appl. Math. 4 (1993), 1–38.

    MathSciNet  MATH  Google Scholar 

  28. T. Kato and J. B. McLeod, The functional-differential equation y′(x) = ayx)] + by(x), Bull. Am. Math. Soc. 77 (1971), 891–937.

    Article  MathSciNet  MATH  Google Scholar 

  29. A. V. Kitaev, Special functions of the isomonodromy type, Acta Appl. Math. 64 (2000), 1–32 and lectures at the NATO ASI “Special functions-2000,” 2000.

    Article  MathSciNet  MATH  Google Scholar 

  30. M. G. Krein, On a continuous analogue of a Christoffel formula in the theory of orthogonal polynomials, Doklady Akad. Nauk SSSR 19 (1957), 1095–1097.

    Google Scholar 

  31. D. Levi and P. Winternitz, Continuous symmetries of discrete equations, Phys. Lett. A152 (1991), 335–338.

    MathSciNet  Google Scholar 

  32. Yu. Liu, On functional differential equations with proportional delays, Ph.D. thesis, Cambridge University, 1996.

    Google Scholar 

  33. I. M. Loutsenko and V. P. Spiridonov, Self-similar potentials and Ising models, JETP Lett. 66 (1997), 789–795; Spectral self-similarity, one-dimensional Ising chains and random matrices, Nucl. Phys. B538 (1999), 731-758.

    Article  Google Scholar 

  34. I. M. Loutsenko and V. P. Spiridonov, Soliton solutions of integrable hierarchies and Coulomb plasmas, J. Stat. Phys. 99 (2000), 751–767; cond-mat/9909308.

    Article  MathSciNet  MATH  Google Scholar 

  35. A. J. Macfarlane, On q-analogues of the quantum harmonic oscillator and quantum group SU(2) q, J. Phys. A: Math. Gen.22 (1989), 4581–4588

    Article  MathSciNet  MATH  Google Scholar 

  36. S. Maeda, The similarity method for difference equations, IMA J. Appl. Math. 38 (1987), 129–134.

    Article  MathSciNet  MATH  Google Scholar 

  37. W. Miller, Jr., Lie theory and difference equations I, J. Math. Anal. Appl. 28 (1969), 383–399.

    Article  MathSciNet  MATH  Google Scholar 

  38. W. Miller, Jr., Symmetry and Separation of Variables, Addison-Wesley, Reading, 1977.

    MATH  Google Scholar 

  39. A. M. Perelomov, Generalized Coherent States and Their Applications, Springer-Verlag, Berlin, 1986.

    Book  MATH  Google Scholar 

  40. V. A. Rubakov and V. P. Spiridonov, Parasupersymmetric quantum mechanics, Mod. Phys. Lett. A3 (1988), 1337–1347.

    MathSciNet  Google Scholar 

  41. U.-W. Schminke, On Schrödinger’s factorization method for Sturm-Liouville operators, Proc. Roy. Soc. Edinburgh 80A (1978), 67–84.

    Article  Google Scholar 

  42. E. Schrödinger, A method of determining quantum-mechanical eigenvalues and eigenfunctions, Proc. Roy. Irish Acad. A46 (1940), 9–16; Further studies on solving eigenvalue problems by factorization, Proc. Roy. Irish Acad. A46, 183-206.

    Google Scholar 

  43. A. B. Shabat, The infinite dimensional dressing dynamical system, Inverse Prob. 8 (1992), 303–308.

    Article  MathSciNet  MATH  Google Scholar 

  44. S. Skorik and V. P. Spiridonov, Self-similar potentials and the q-oscillator algebra at roots of unity, Lett. Math. Phys. 28 (1993), 59–74.

    Article  MathSciNet  MATH  Google Scholar 

  45. S. P. Smith, A class of algebras similar to the enveloping algebra of sl(2), Trans. Amer. Math. Soc. 322 (1990), 285–314.

    MathSciNet  MATH  Google Scholar 

  46. V. P. Spiridonov, Exactly solvable potentials and quantum algebras, Phys. Rev. Lett. 69 (1992), 398–401; Deformation of super symmetric and conformai quantum mechanics through affine transformations, in: “Proceedings of the International Workshop on Harmonic Oscillators”, NASA Conf. Publ. 3197, pp. 93-108; hep-th/9208073.

    Article  MathSciNet  MATH  Google Scholar 

  47. V. P. Spiridonov, Coherent states of the q-Weyl algebra, Lett. Math. Phys. 35 (1995), 179–185; Universal superpositions of coherent states and self-similar potentials, Phys. Rev. A52, 1909-1935; (E) A53, 2903; quant-ph/9601030.

    Article  MathSciNet  MATH  Google Scholar 

  48. V. P. Spiridonov, Symmetries of factorization chains for the discrete Schrödinger equation, J. Phys. A: Math. Gen. 30 (1997), L15–L21.

    Article  MathSciNet  MATH  Google Scholar 

  49. V. P. Spiridonov and A. S. Zhedanov, Discrete Darboux transformations, discrete time Toda lattice and the Askey-Wilson polynomials, Meth. Appl. Anal. 2 (1995), 369–398.

    MathSciNet  MATH  Google Scholar 

  50. A. P. Veselov and A. B. Shabat, Dressing chain and spectral theory of Schrödinger operator, Punk. Anal, i ego Pril. 27(2) (1993), 1–21.

    MathSciNet  Google Scholar 

  51. J. Weiss, Periodic fixed points of Bäcklund transformations, J. Math. Phys. 31 (1987), 2025–2039.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Spiridonov, V.P. (2001). The Factorization Method, Self-Similar Potentials and Quantum Algebras. In: Bustoz, J., Ismail, M.E.H., Suslov, S.K. (eds) Special Functions 2000: Current Perspective and Future Directions. NATO Science Series, vol 30. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0818-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0818-1_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-7120-5

  • Online ISBN: 978-94-010-0818-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics