Skip to main content

Abstract

We study the energetics and atomic mechanisms of diffusion of adatom islands on fcc(100) metal surfaces. For small islands, we perform detailed microscopic calculations using semi-empirical embedded-atom model and glue potentials in the case of Cu and Al, respectively. Combining systematic saddle-point search methods and molecular statics simulations allows us to find all the relevant transition paths for island motion. In particular, we demonstrate that there are novel many-body mechanisms such as internal row shearing which can, in some cases, control the island dynamics. Next, we show how using the master equation formalism, diffusion coefficients for small islands up to about five atoms, can be calculated analytically from the knowledge of the transition rates. In the case of larger islands, we perform large-scale kinetic Monte Carlo simulations based on microscopic single particle energetics. These results show that, as a function of the island size, there is a crossover from periphery dominated mass transport to a regime controlled by the motion of vacancies inside the island.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barabási A.-L. and Stanley H.E. (1995), Fractal Concepts in Surface Growth, Cambridge University Press, Cambridge.

    Book  Google Scholar 

  2. Erlich G. (1974) CRC Crit. Rev. Solid State Mater. Sci. 4205; Gomer R. (1990) Rep. Prog. Phys. 53 917.

    Google Scholar 

  3. Binning G., Fuchs H. and Stoll E. (1986) Surf. Sci. 169, L295.

    Article  Google Scholar 

  4. Kellogg G.L. (1994) Oscillatory behavior in the size dependence of cluster mobility on metal surfaces: Rh on Rh(100), Phys. Rev. Lett. 73, 1833–1836.

    Article  CAS  Google Scholar 

  5. Shi Z.-R, Zhang Z., Swan A.K., and Wendelken J.F. (1996) Dimer shearing as a novel mechanism for cluster diffusion and dislocation on metal(100) surfaces, Phys. Rev. Lett. 76, 4927–4930.

    Article  CAS  Google Scholar 

  6. Heinonen J., Koponen I., Merikoski J., and Ala-Nissila T. (1999) Island diffusion on metal fcc(100) surfaces, Phys. Rev. Lett. 82, 2733–2736.

    Article  CAS  Google Scholar 

  7. Merikoski J., Vattulainen I., Heinonen J., and Ala-Nissila T. (1997) Effect of kinks and concerted diffusion mechanisms on mass transport and growth on stepped metal surfaces, Surf. Sci. 387, 167–182.

    Article  CAS  Google Scholar 

  8. Pai W.W., Swan A.K., Zhang Z., and Wendelken J.F. (1997) Island Diffusion and Coarsening on Metal (100) Surfaces, Phys. Rev. Lett. 79, 3210–3213.

    Article  CAS  Google Scholar 

  9. Khare S.V. and Einstein T.L. (1998) Unified view of step-edge kinetics and fluctuations, Phys. Rev. B 57, 4782–4797.

    Article  CAS  Google Scholar 

  10. Hannon J.B., Klünker C, Giesen M., Ibach H., Bartelt N. C, and Hamilton J. C. (1997) Surface Self-Diffusion by Vacancy Motion: Island Ripening on Cu(001), Phys. Rev. Lett. 79, 2506–2509.

    Article  CAS  Google Scholar 

  11. Trushin O.S., Salo P., and Ala-Nissila T. (2000) Energetics and many-particle mechanisms of two-dimensional cluster diffusion on Cu(100) surfaces, Phys. Rev. B 62, 1611–1614.

    Article  CAS  Google Scholar 

  12. Jónsson H., Mills G. and Jacobsen K.W. (1998) in: Classical and Quantum Dynamics in Condensed Phase Simulations, Eds. B.J. Berne, G. Ciccotti, and D.F. Coker, World Scientific, Singapore.

    Google Scholar 

  13. Munro L.J. and Wales D.J. (1999) Defect migration in crystalline silicon, Phys. Rev. B 59, 3969–3980, and references therein.

    Article  CAS  Google Scholar 

  14. Foiles S.M., Baskes M.I., and Daw M.S. (1986) Embedded-atom-method functions for the fcc metals Cu,Ag,Au,Ni,Pd,Pt, and their alloys, Phys. Rev. B 33, 7983–7990.

    Article  CAS  Google Scholar 

  15. Trushin O.S., Kokko K., Salo P.T., Hergert W., and Kotrla M. (1997) Step roughening effect on adatom diffusion, Phys. Rev. B 56, 12135–12138.

    Article  CAS  Google Scholar 

  16. R. Stumpf and M. Scheffler (1996) Ab initio calculations of energies and self-diffusion on flat and stepped surfaces of Al and their implications on crystal growth, Phys. Rev. B 53, 4958–4973.

    Article  Google Scholar 

  17. Feibelman P.J. (1999) Scaling of hopping self-diffusion barriers on fcc(100) surfaces with bulk bond energies, Surf. Sci. 423, 169–174.

    Article  CAS  Google Scholar 

  18. Feibelman P.J. (1990) Diffusion path for an Al adatom on Al(001), Phys. Rev. Lett. 65, 729–732.

    Article  CAS  Google Scholar 

  19. Ercolessi F. and Adams J.B. (1994) Interatomic potentials from first-principles calculations: the force-matching method, Europhys. Lett. 26, 583–588.

    Article  CAS  Google Scholar 

  20. Henkelman G. and Jónsson H. (1999) A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives, J. Chem. Phys. 111, 7010–7022.

    Article  CAS  Google Scholar 

  21. Titulaer U.M. and Deutsch J.M. (1982) J. Chem. Phys. 77, 472.

    Article  CAS  Google Scholar 

  22. Sanchez J.R. and Evans J.W. (1999) Diffusion of small clusters on metal (100) surfaces: Exact master-equation analysis for lattice-gas models, Phys. Rev. B 59, 3224–3233.

    Article  CAS  Google Scholar 

  23. Hirvonen J. et al. (2000), unpublished.

    Google Scholar 

  24. Bardotti L., Bartelt M. C, Jenks C.J., Stoldt C.R., Wen J.-M., Zhang C.-M., Thiel P.A., and Evans J.W. (1998) Langmuir 14,, 1487; Stoldt C.R., Jenks C.J., Thiel P.A., Cadilhe A.M., and Evans J.W. (1999) J. Chem. Phys. 111,, 5157.

    Article  Google Scholar 

  25. Bardotti L., Bartelt M. C, Jenks C.J., Stoldt C.R., Wen J.-M., Zhang C.-M., Thiel P.A., and Evans J.W. (1998) Langmuir 14,, 1487; Stoldt C.R., Jenks C.J., Thiel P.A., Cadilhe A.M., and Evans J.W. (1999) J. Chem. Phys. 111,, 5157.

    Article  CAS  Google Scholar 

  26. Hansen U., Vogl P., and Fiorentini V. (1999) Quasiharmonic versus exact surface free energies of Al: A systematic study employing a classical interatomic potential, Phys. Rev. B 60, 5055–5064.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Trushin, O.S. et al. (2001). Adatom Island Diffusion on Metal Fcc(100) Surfaces. In: Tringides, M.C., Chvoj, Z. (eds) Collective Diffusion on Surfaces: Correlation Effects and Adatom Interactions. NATO Science Series II: Mathematics, Physics and Chemistry, vol 29. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0816-7_28

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0816-7_28

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-7116-8

  • Online ISBN: 978-94-010-0816-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics