Analytical Kinetic Theory of Single-Particle and Collective Surface Diffusion

  • S. Yu. Krylov
Conference paper
Part of the NATO Science Series II: Mathematics, Physics and Chemistry book series (NAII, volume 29)

Abstract

This paper generalizes the results of a recently developed kinetic theory of surface diffusion conceptually different both from the popular transition state hopping model and from the Fokker-Plank kinetic model (or its equivalent Generalized Langevin approach). Following the first principles of statistical mechanics, the theory is based on the evolution of the particle’s probability density, and takes into account the possibility of a finite change in adparticle energy due to its interaction with the substrate excitations. We show how, in this general way under some simplifying assumptions, one can reach a relatively simple, analytical description of surface diffusion that goes far beyond the abilities of the TST model. Examples are given by the occurrence of long jumps and “anomalous” pre-exponential factors of the diffusion coefficient in the low-density limit. Moreover, the theory allows, for the first time, kinetic treatment of surface diffusion at finite occupancy, resulting in a new sight on mechanisms determining the density dependence of collective diffusivity. Some puzzling aspects of surface cluster diffusion (gliding) can also be elucidated.

Keywords

Migration Anisotropy Hexagonal 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Feibelman, P.J. (1989) Theory of adsorbate interactions, Annu. Rev. Phys. Chem. 40, 261–290.CrossRefGoogle Scholar
  2. 2.
    Ratsch, C. and Scheffler, M. (1998) Density-functional theory calculations of hopping rates of surface diffusion, Phys. Rev. B58, 13163–13166.Google Scholar
  3. 3.
    Gomer, R. (1990) Diffusion of adsorbates on metal surfaces, Rep. Prog. Phys. 53, 917–1002.CrossRefGoogle Scholar
  4. 4.
    Barth, J.V. (2000) Transport of adsorbates at metal surfaces: Prom thermal migra-tion to hot precursors, Surf. Sci. Rep. 40, 75–149.CrossRefGoogle Scholar
  5. 5.
    Seebauer, E.G. and Allen, C.E. (1995) Estimating surface-diffusion coefficients, Prog. Surf. Sci. 49, 265–330.CrossRefGoogle Scholar
  6. 6.
    Lifshitz, E.M. and Pitaevskii, L.P. (1981) Physical Kinetics, Pergamon, Oxford.Google Scholar
  7. 7.
    Ferrando, R., Spadacini, R. and Tommei, G.E. (1993) Diffusion in a periodic potential in the strong collision limit, Chem. Phys. Lett. 202, 248–252.CrossRefGoogle Scholar
  8. 8.
    Ferrando, R., Spadacini, R. and Tommei, G.E. (1993) Kramers problem in periodic potentials—jump rate and jump length, Phys. Rev. E48, 2437–2451.Google Scholar
  9. 9.
    Kreuser, H.J. and Gortel, Z.W. (1986) Physisorption Kinetics, Springer Ser. Phys. Chem., Springer, Berlin.CrossRefGoogle Scholar
  10. 10.
    Borman, V.D., Krylov, S.Yu. and Prosyanov, A.V. (1988) Theory of nonequilibrium phenomena at gas-surface interface, Sov. Phys. JETP 67, 2110–2121.Google Scholar
  11. 11.
    Beenakker, J.J.M. and Krylov, S.Yu. (1997) One-dimensional surface diffusion: Density dependence in a smooth potential, J. Chem. Phys. 107, 4015–4023.CrossRefGoogle Scholar
  12. 12.
    Krylov, S.Yu., Prosyanov, A.V. and Beenakker, J.J.M. (1997) One dimensional surface diffusion: Density dependence in a corrugated potential, J. Chem. Phys. 107, 6970–6979.CrossRefGoogle Scholar
  13. 13.
    Beenakker, J.J.M. and Krylov, S.Yu. (1998) Jump length distribution in molecule-on-substrate diffusion, Surf. Sci. 411, L816–L821.CrossRefGoogle Scholar
  14. 14.
    Krylov, S.Yu., Beenakker, J.J.M. and Tringides, M.C. (1999) On the theory of surface diffusion: kinetic versus lattice gas approach, Surf. Sci. 420, 233–249.CrossRefGoogle Scholar
  15. 15.
    Krylov, S.Yu. and Tringides, M.C. (1999) Anomalous preexponential factors in surface diffusion: A kinetic look into the problem, ECOSS-18, Europhys. Conf. Abst. 23G, abstract Tul440.Google Scholar
  16. 16.
    Krylov, S.Yu. (1999) Surface gliding of large low-dimensional clusters, Phys. Rev. Lett. 83, 4602–4605.CrossRefGoogle Scholar
  17. 17.
    Krylov, S.Yu. (2000) Failure of ID models for Ir island diffusion on Ir(111)—Krylov replies, Phys. Rev. Lett. 85, 1581–1584.CrossRefGoogle Scholar
  18. 18.
    Wang, S.C., Kurpick, U. and Ehrlich, G. (1998) Surface diffusion of compact and other clusters: Ir-x on Ir(111), Phys. Rev. Lett. 81, 4923–4926.CrossRefGoogle Scholar
  19. 19.
    Maksimov, L.A. and Ilyin, A.V. (1974) Physical Kinetics, MPhTI, Moscow.Google Scholar
  20. 20.
    Hänggi, P., Talkner, P. and Borkovec, M. (1990) Reaction-rate theory—50 years after Kramers, Rev. Mod. Phys. 62, 251–341.CrossRefGoogle Scholar
  21. 21.
    Cucchetti, A. and Ying, S.C. (1996) Memory effects in the frictional damping of diffusive and vibrational motion of adatoms, Phys. Rev. B54, 3300–3310.Google Scholar
  22. 22.
    Hofmann, F., Toennies, J.P. and Manson, J.R. (1997) The transition from single phonon to multiphonon energy transfer in atom-surface collisions, J. Chem. Phys. 106, 1234–1247.CrossRefGoogle Scholar
  23. 23.
    Chen, L.Y., Baldan, M.R. and Ying, S.C. (1996) Surface diffusion in the low-friction limit: Occurrence of long jumps, Phys. Rev. B54, 8856–8861.Google Scholar
  24. 24.
    Senft, D.C. and Ehrlich, G. (1995) Long jumps in surface diffusion—one-dimensional migration of isolated adatoms, Phys. Rev. Lett. 74, 294–297.CrossRefGoogle Scholar
  25. 25.
    Linderoth, T.R., et al. (1997) Surface diffusion of Pt on Pt(llO): Arrhenius behavior of long jumps, Phys. Rev. Lett. 78, 4978–4981.CrossRefGoogle Scholar
  26. 26.
    Kürpick, U., Kara, A. and Rahman, T.S. (1997) Role of lattice vibrations in adatom diffusion, Phys. Rev. Lett. 78, 1086–1089.CrossRefGoogle Scholar
  27. 27.
    Roos, K.R. and Tringides, M.C. (2000) Determination of interlayer diffusion parameters for Ag/Ag(111), Phys. Rev. Lett. 85, 1480–1483.CrossRefGoogle Scholar
  28. 28.
    Jensen, P. (1999) Growth of nanostructures by cluster deposition: Experiments and simple models, Rev. Mod. Phys. 71, 1695–1735.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • S. Yu. Krylov
    • 1
  1. 1.Institute of Physical ChemistryRASMoscowRussia

Personalised recommendations