Advertisement

Decay of Two-Dimensional Islands on Ag(110)

  • K. Morgenstern
  • E. Lægsgaard
  • F. Besenbacher
Part of the NATO Science Series II: Mathematics, Physics and Chemistry book series (NAII, volume 29)

Abstract

We have investigated the decay of two-dimensional (2D) islands on the anisotropic Ag(110) surface using variable-temperature scanning tunneling microscopy. Contrary to predictions from traditional Ostwald ripening theory, a quasi-one-dimensional (1D) decay mode was observed at low temperatures (175–220 K). A surprisingly sharp transition to the quasi-2D decay mode was observed around 220 K. This transition was accompanied by a fast equilibration of the island shape. These findings have tentatively been rationalized within a simple model to identify the underlying rate limiting atomistic processes.

Keywords

Scanning Tunnelling Microscope Scanning Tunnelling Microscope Image Step Edge Effective Medium Theory Anisotropic Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D.R. Peale and B.H. Cooper, J. Vac. Sci. Technol. A10, 2210 (1992).Google Scholar
  2. 2.
    W. Theis, N.C. Bartelt, and R.M. Tromp, Phys. Rev. Lett. 75, 3323 (1995).CrossRefGoogle Scholar
  3. 3.
    N.C. Bartelt, W. Theis, and R.M. Tromp, Phys. Rev. B54, 11741 (1996).Google Scholar
  4. 4.
    K. Morgenstern, G. Rosenfeld, and G. Comsa, Phys. Rev. Lett. 76, 2113 (1996).CrossRefGoogle Scholar
  5. 5.
    J.-M. Wen, J.W. Evans, M.C. Bartelt, J.W. Burnett, and P.A. Thiel, Phys. Rev. Lett. 76, 652 (1996).CrossRefGoogle Scholar
  6. 6.
    J.B. Hannon, C. Klunker, M. Giesen, H. Ibach, N.C. Bartelt, and J.C. Hamilton, Phys. Rev. Lett. 79, 2506 (1997).CrossRefGoogle Scholar
  7. 7.
    A. Ichimiya, Y. Tanaka, and K. Ishiyama, Surf. Sci. 386, 182 (1997).CrossRefGoogle Scholar
  8. 8.
    M. Giesen, G. Schulze Icking-Konert, and H. Ibach, Phys. Rev. Lett. 80, 552 (1998).CrossRefGoogle Scholar
  9. 9.
    K. Morgenstern, G. Rosenfeld, E. Laegsgaard, F. Besenbacher, and G. Comsa, Phys. Rev. Lett. 80, 556 (1998).CrossRefGoogle Scholar
  10. 10.
    K. Morgenstern, G. Rosenfeld, and G. Comsa, Surf. Sci. 441, 289 (1999).CrossRefGoogle Scholar
  11. 11.
    M. Poensgen, J.F. Wolf, J. Frohn, M. Giesen, and H. Ibach, Surf. Sci. 274, 430 (1992); L. Kuipers, M.S. Hoogeman, and J.W.M. Frenken, Phys. Rev. Lett. 71, 3517 (1993); K. Morgenstern, G. Rosenfeld, B. Poelsema, and G. Comsa, Phys. Rev. Lett. 74, 2058 (1995); W.W. Pai, N.C. Bartelt, and J.E. Reutt-Robey, Phys. Rev. B53, 15991 (1996).CrossRefGoogle Scholar
  12. 12.
    W.W. Pai, A.K. Swan, Z. Zhang, and J.F. Wendelken, Phys. Rev. Lett. 79, 3210 (1997).CrossRefGoogle Scholar
  13. 13.
    K. Morgenstern, E. Laegsgaard, I. Stensgaard, and F. Besenbacher, Phys. Rev. Lett. 83, 1613 (1999); K. Morgenstern, E. Laegsgaard, I. Stensgaard, F. Besenbacher, M. Böhringer, W.-D. Schneider, R. Berndt, F. Mauri, A. De Vita, and R. Car, Appl. Phys. A69, 559 (1999).CrossRefGoogle Scholar
  14. 14.
    L.M. Lifshitz and V.V. Slyozov, J. Phys. Chem. Solids 19, 35 (1961); C. Wagner, Z. Electrochem. 65, 581 (1961).CrossRefGoogle Scholar
  15. 15.
    N.C. Bartelt and J. Evans, Europhys. Lett. 21, 99 (1993).CrossRefGoogle Scholar
  16. 16.
    L.D. Landau and E.M. Lifshhitz, Course of Theoretical Physics, Vol. 5: Statistical Physics, Pergamon Press, 1959, p. 482.Google Scholar
  17. 17.
    F. Hontinfinde, R. Ferrando, and A.C. Levi, Surf. Sci. 366, 306 (1996).CrossRefGoogle Scholar
  18. 18.
    F. Besenbacher, Rep. Prog. Phys. 59, 1737 (1996).CrossRefGoogle Scholar
  19. 19.
    The lowest temperature reported in literature is (725±25) K: G.A. Held, J.L. Jordan —Sweet, P.M. Horn, A. Mak, and R.J. Birgeneau, Phys. Rev. Lett. 59, 2075 (1987).CrossRefGoogle Scholar
  20. 20.
    Y.-W. Mo, B.S. Swartzentruber, R. Kariotis, M.B. Webb, and M.G. Lagally, Phys. Rev. Lett. 63, 2393 (1989); Y.-W. Mo, J. Kleiner, M.B. Webb, and M.G. Lagally, Phys. Rev. Lett. 66, 1998 (1991).CrossRefGoogle Scholar
  21. 21.
    R. Ferrando, F. Hontefinde, and A.C. Levi, Phys. Rev. B56, R4406 (1997).Google Scholar
  22. 22.
    K. Morgenstern, G. Rosenfeld, B. Poelsema, and G. Comsa, Surf. Sci. 352—354, 956 (1996); J. Li, R. Berndt, and W.-D. Schneider, Phys. Rev. Lett. 76, 1888 (1996).CrossRefGoogle Scholar
  23. 23.
    M. Zinke-Allmang, L.C. Feldman, and M.H. Garbow, Surf. Sci. Rep. 16, 337 (1992); J.G. McLean, B. Krishnamachari, D.R. Peale, E. Chason, J.P. Sethna, and B.H. Cooper, Phys. Rev. B55, 1811 (1997) and references therein. CrossRefGoogle Scholar
  24. 24.
    G. Rosenfeld, K. Morgenstern, and G. Comsa, in: Surface Diffusion: Atomistic and Colletive Processes, M.C. Tringides (Ed.), Plenum Press, New York 1997.Google Scholar
  25. 25.
    P. Stoltze, J. Phys. Condens. Matter 6, 9495 (1994); J. K. Norskov, K. W. Jacobsen, P. Stoltze, and L.B. Hansen, Surf. Sci. 283, 277 (1993)CrossRefGoogle Scholar
  26. 26.
    Y. Li, M.C. Bartelt, J.W. Evans, N. Waelchi, E. Kampshoff, and K. Kern, Phys. Rev. B56, 12539 (1997).Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • K. Morgenstern
    • 1
    • 2
  • E. Lægsgaard
    • 1
  • F. Besenbacher
    • 1
  1. 1.Institute of Physics and Astronomy and CAMPUniversity of AarhusAarhus CDenmark
  2. 2.Institut für ExperimentalphysikFU BerlinBerlinGermany

Personalised recommendations