Skip to main content

Adsorption, Desorption and Diffusion of Potassium on Metal and Oxide Surfaces

  • Conference paper
Collective Diffusion on Surfaces: Correlation Effects and Adatom Interactions

Part of the book series: NATO Science Series II: Mathematics, Physics and Chemistry ((NAII,volume 29))

  • 166 Accesses

Abstract

The adsorption-desorption and diffusion of potassium atoms on Ru(0001), Re(0001) and Cr2O3(0001) surfaces were studied using work function change (?), temperature programmed desorption (TPD) and optical second harmonic generation (SHG) measurements. Work function and TPD data indicated that on both metallic surfaces the bonding of potassium atoms is typical to alkali metals, namely, highly ionic nature at low coverages that gradually change to neutral layers at coverages approaching monolayer and above. This is revealed by the shift of the desorption peak from near 1000 K at 0.05 monolayer (ML) down to 350 K at 1ML.

Work function change is maximal near 0.5 ML in the case of the metallic surface, where the balance between number of positive dipoles and neutral islands leads to decrease of near 4 eV. At higher coverages starts to increase, approaching the bulk potassium work function at coverages of 1 ML and above. In the case of the oxide surface, on the other hand, at the completion of the first layer, the potassium atoms are still partially charged. This is indicated by the high desorption temperature of 600 K at 1ML. Higher coverages result in the formation of 2D and 3D islands desorbing at 450 K and 350 K, respectively.

Diffusion of the potassium atoms is studied by the SH diffraction method from coverage grating. Small coverage dependence of the diffusion rate is found on the metal substrates with a barrier for diffusion of 5 kcal/mole on Re(0001) at 1ML. On the oxide surface, the diffraction method followed the descent of potassium atoms from the edges of the 3D islands to the underlying layer of potassium on top of the oxide surface. A barrier for this process of 11 kcal/mole suggests that the effective corrugation on the oxide surface is significantly higher than on the metal substrates, leading to the higher barrier. The origin for these differences between metallic and oxide surfaces in terms of the interaction with alkali metals is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bonzel, H. P., Bradshaw, A. M., and Ertl, G., (eds.), (1989) Physics and Chemistry of Alkali Metal Adsorption, in Materials Science Monographs, 57, Elsevier, Amsterdam.

    Google Scholar 

  2. Bonzel, H. P., and Pirug, G., (1993) Coadsorption, Promoters and Poisons, in King, D. A. and Woodruff D. P. (eds.), The Chemical Physics of Solid Surfaces, Vol 6, Elsevier Science Amsterdam.

    Google Scholar 

  3. Verhoef, R., W., Zhao, W., and Asscher, M., (1997), J. Chem. Phys., 106, 9353, and references therein.

    Article  CAS  Google Scholar 

  4. Song, K., J., Heskett, D., Dai, H., L., Liebsch, A., and Plummer, E., W., (1988), Phys. Rev. Lett, 61, 1380.

    Article  CAS  Google Scholar 

  5. Zhao, W., and Asscher, M, (1999), Surf Sci., 429, 1

    Article  CAS  Google Scholar 

  6. Zhao, W., Chacham, I., Vackart, Y., and Asscher, M. (1999), Isr. J. of Chemistry, 38(4), 399.

    Google Scholar 

  7. Noguera, G, (1996) Physics and Chemistry at oxide surfaces, Cambridge University Press, Cambridge.

    Book  Google Scholar 

  8. Street, S. C., Xu, C, and Goodman, D. W., (1997),,Ann. Rev. Phys. Chem., 48, 43.

    Article  CAS  Google Scholar 

  9. Freund, H.-J., (1997) Angew. Chem. Int. Ed. Engl., 36, 452.

    Article  Google Scholar 

  10. Campbell, C. T., (1997) Surf. Sci. Rep., 27, 1.

    Article  CAS  Google Scholar 

  11. Valden, M., Lai, X., and Goodman, D. W., (1998) Science, 281(5383), 1647.

    Article  CAS  Google Scholar 

  12. Valden, M., and Goodman, D. W., (1999) Isr. J. of Chem., 38(4), 285.

    Google Scholar 

  13. Gomer, R., (1990) Rept. Prog. Phys. 53, 917.

    Article  CAS  Google Scholar 

  14. Zhu, X. D., Rasing, Th., and Shen, Y. R., (1988) Phys. Rev. Lett. 61, 2883.

    Article  CAS  Google Scholar 

  15. Xiao, X.-D., Xie, Y., and Shen, Y. R., (1992) Surf. Sci. 271, 295

    Article  CAS  Google Scholar 

  16. Zhu, X. D., (1992) Mod. Phys. Lett. B 6, 1217.

    Google Scholar 

  17. Zhao, W., Verhoef, R. W., and Asscher, M., (1997) j. Chem. Phys., 107, 5554.

    Article  CAS  Google Scholar 

  18. Rosenzweig, Z., and Asscher, M., (1992) J. Chem. Phys. 96, 4040.

    Article  CAS  Google Scholar 

  19. Livneh, T., and Asscher, M., (1997) J. Phys. Chem., B 101, 5705.

    Google Scholar 

  20. Rohr, F., Bäumer, M., Freund, H.-J., Mejias, J. A., Staemmler, V. Müller, S., Hammer, L., and Heinz, K., (1997) Surface Science 312, L291.

    Article  Google Scholar 

  21. Neugebauer, J., M., Scheffler, M., (1993) Phys. Rev. Lett. 71, 577.

    Article  CAS  Google Scholar 

  22. Zhao, W., Kerner, G., Asscher, M., Wilde, M., Al-Shamry, K., Freund, H.-J., Staemmler, V., Wieszbowska, M., (2000) Phys. Rev. B 62(11), 7527.

    Google Scholar 

  23. Wilde, M., Beauport, I., Stuhl, F., Al-Shamery, K., Freund, H.-J. (1999) Phys. Rev. B 59, 13401.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Kerner, G., Danziger, I.M., Zhao, W., Asscher, M. (2001). Adsorption, Desorption and Diffusion of Potassium on Metal and Oxide Surfaces. In: Tringides, M.C., Chvoj, Z. (eds) Collective Diffusion on Surfaces: Correlation Effects and Adatom Interactions. NATO Science Series II: Mathematics, Physics and Chemistry, vol 29. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0816-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0816-7_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-7116-8

  • Online ISBN: 978-94-010-0816-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics