Skip to main content

A New View of the Moon in Light of Data from Clementine and Prospector Missions

  • Conference paper
  • 441 Accesses

Abstract

Results from the 1994 Clementine and 1998–99 Lunar Prospector orbital missions are forcing a reevaluation of existing models of the origin and evolution of the Moon. Data on global topography and gravity from Clementine gravity and LIDAR experiments indicate a 16 km elevation range on the farside of the Moon and a wide range in computed crustal thickness. The data confirm the presence of mascons under mare-filled basins and validate earlier models of lunar hemispherical asymmetry. High resolution global maps of FeO and TiO2 derived from the Clementine UV-VIS data and Th maps from the Prospector gamma-ray data indicate that the lunar crust and the uppermost lunar mantle are laterally and vertically inhomogeneous on a global scale. An area of enhanced Th (and other incompatible element) abundances, known as the Procellarum KREEP Terrane (PKT), makes up approximately 16% of the nearside lunar surface. Although the highest Th abundances appear to be in upper crustal impact deposits, the close association of mare basalts with the PKT indicates that anomalously high Th, U, and K concentrations extend to mantle depths. Anorthosites are very rare within the PKT and the pre-mare crust in this region is composed of breccias and pristine rocks of the magnesian-suite and alkali-suite. The upper crust outside the PKT is anorthositic ( ~4% FeO and <1 ppm Th) and appears to be only slightly modified from the crust produced in the early magmasphere differentiation. A glimpse into the lower crust is provided in the South Pole-Aitken (SP-A) basin where the upper crust has been removed by a giant impact. The lower crust in SP-A is noritic in composition (FeO from 8–12%, Th from 2–4 ppm) and this material may represent impact-melted crustal cumulates that originally crystallized from the magma ocean. It is suggested that the enrichment in Th, and all other incompatible elements, occurred early in lunar history as a consequence of the migration of late-stage residual melts along a pressure gradient induced by impact removal or thinning of the anorthositic crust.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Binder, A. B.: 1998, ‘Lunar Prospeetor: Overview’, Science 281, 1475–1476.

    Google Scholar 

  • Dalrymple, G. B. and Ryder, G.: 1996, ‘Argon-4ofArgon-39 Age Speetra of Apollo 17 Highlands Breeeia Sampies by Laser Step Heating and the Age of the Serenitatis Basin’, 1. Geophys. Res. 101, 26069–26084.

    Google Scholar 

  • DeHon, R. A.: 1979, ‘Thiekness of the Western Mare Basalts’, in Proceedings of the Lunar Scientific Conference, 10th, pp. 2935–2955.

    Google Scholar 

  • Elphie, R. C., Lawrenee, D. J., Feldman, W. C., Barraclough, B. L., Mauriee, S., Binder, A. B., and Lueey, P. G.: 2000, ‘Lunar Rare Earth Element Distribution and Ramifieations for FeO and TiO2: Lunar Prospeetor Neutron Speetrometer Observations’, J. Geophys. Res. 105, 20333–20346.

    Article  ADS  Google Scholar 

  • Hartrnann, W. K.: 1980, ‘Dropping Stones in Magma Oeeans: Effeets of Early Lunar Cratering’, in Proceedings of the Conference on Lunar Highlands Crust, Geochim. Cosmochim. Acta, Supplement 12, pp. 155–171.

    Google Scholar 

  • Haskin, L. A., Gillis, J. J., Korotev, R. L., and Jolliff, B. J.: 2000, ‘The Materials of the Lunar Proeellarum KREEP Terrane: A Synthesis of Data from Geomorphological Mapping, Remote Sensing, and Sampie Analysis’, J. Geophys. Res. 105, 20403–20414.

    Article  ADS  Google Scholar 

  • Haskin, L. A., Korotev, R L., Rockow, K L., and Jolliff, B. L.: 1998, ‘The Case for an Imbrium Origin of the Apollo Thorium-Rich, Impact-Melt Breccia’, Meteorit. Planet. Sci. 33, 959–975.

    Article  ADS  Google Scholar 

  • Hess, P. C. and Parmentier, E. M.: 1995, ‘A Model for the Thermal and Chemical Evolution of the Moon’s Interior: Implications for the Onset of Mare Vo1canism’, Earth Planet. Sci. Lett. 134, 501–514.

    Article  ADS  Google Scholar 

  • Hiesinger, H., Head, J. W., Wolf, U., and Neukum, G.: 2000, ‘Lunar Mare Basalts in Oceanus Procellarum: Initial Results on Age and Composition’, Lunar Planet. Sci. XXXI 1278 (Abstract).

    ADS  Google Scholar 

  • Horai, K and Winkler, J. L.: 1976, ‘Thermal Diffusivity of Four Apollo 17 Rock Sampies’, in Proceedings of the Lunar Scientific Conference, 7th, pp. 3183–3204.

    Google Scholar 

  • Jolliff, B. L., Gilllis, J. J., Haskin, L. A., Korotev, R L., and Wieczorek, M. A.: 2000, ‘Major Lunar Crustal Terranes: Surface Expressions and Crust-Mantle Origins’, J. Geophys. Res. 105, 4197–4216.

    Article  ADS  Google Scholar 

  • Kaula, W. M., Schubert, G., Lingenfelter, R E., Sjogren, W. L., and Wollenhaupt, W. R: 1972, ‘Analysis and Interpretation of Lunar Laser Altimetry’, in Proceedings of the Lunar Scientific Conference, 3rd, pp. 2189–2204.

    Google Scholar 

  • Korotev, R L.: 2000, ‘The Great Lunar Hot Spot and the Composition and Origin of the Apollo Mafic (LKFM) Impact-Melt Breccias’, 1. Geophys. Res. 105, 4317–4345.

    Article  ADS  Google Scholar 

  • Langseth, M. G., Keihm, S. J., and Peters, K: 1976, ‘Revised Lunar Heat Flow Values’, in Proceedings of the Lunar Scientific Conference, 7th, pp. 3143–3171.

    Google Scholar 

  • Lawrence, D. J., Feldman, W. C., Barraclough, B. L., Binder, A. B., Elphic, R. C., Maurice, S., Miller, M. C., and Prettyman, T. H.: 1999, ‘High Resolution Measurements of Absolute Thorium Abundances on the Lunar Surface’, Geophys. Res. Lett. 26, 2681–2684.

    Article  ADS  Google Scholar 

  • Lawrence, D. J., Feldman, W. C., Barraclough, B. L., Binder, A. B., Elphic, R C., Maurice, S., Miller, M. C., and Prettyman, T. H.: 2000, ‘Thorium Abundances on the Lunar Surface’,1. Geophys. Res. 105, 20307–20332.

    Article  ADS  Google Scholar 

  • Lawrence, D. J., Feldman, W. C., Barraclough, B. L., Binder, A. B., Elphic, R. C., Maurice, S., and Thomson, D. R: 1998, ‘Global Element Maps of the Moon: The Lunar Prospector Gamma-Ray Spectrometer’, Science 281, 1484–1489.

    Article  ADS  Google Scholar 

  • Lee, D. C., Halliday, A. N., Snyder, G. A., and Taylor, L. A.: 1997, ‘Age and Origin of the Moon’, Science 278, 1098–1113.

    Article  ADS  Google Scholar 

  • Loper, D. E. and Wemer, C.: 2000, ‘On the Cause ofLunar Crustal Asymmetries’, Lunar Planet. Sci. XXXI 1764 (Abstract).

    ADS  Google Scholar 

  • Lucey, P. G., Blewett, D. T., and Hawke, B. R: 1998a, ‘Mapping the FeO and TiO2 Content of the Lunar Surface with Multispectral Imagery’, J. Geophys. Res. 103, 3679–3699.

    Article  ADS  Google Scholar 

  • Lucey, P. G., Blewett, D. T., and Jolliff, B. L.: 2000, ‘Lunar Iron and Titanium Abundance Algorithms Based on Final Processing of Clementine UVVIS Images’, 1. Geophys. Res. 105, 20297–20306.

    Article  ADS  Google Scholar 

  • Lucey, P. G., Taylor, G. J., Hawke, B. R, and Spudis, P. D.: 1998b, ‘FeO and Ti02 Concentrations in the South Pole-Aitken Basin: Implications for Mantle Composition and Basin Formation’, 1. Geophys. Res. 103, 3701–3708.

    Article  ADS  Google Scholar 

  • McCallum, I. S.: 1998, ‘The Stratigraphy and Evolution of the Lunar Crust’, in New Views of the Moon Conference, Lunar Planetary Institute, Houston, pp. 59–60.

    Google Scholar 

  • McCallum, I. S. and O’Brien, H. E.: 1996, ‘Stratigraphy of the Lunar Highland Crust: Depth of Burial of Lunar Samples from Cooling Rate Studies’, Amer. Mineral. 81, 1166–1175.

    Google Scholar 

  • McCallum, I. S. and Schwartz, J. M.: 2001, ‘Lunar Mg Suite: Thermobarometry and Petrogenesis of Parental Magmas’, 1. Geophys. Res., in press.

    Google Scholar 

  • Metzger, A. E., Haines, E. L., Parker, RE., and Radocinski, R. G.: 1977, ‘Thorium Concentrations on the Lunar Surface, I: Regional Values and Crustal Content’, in Proceedings of the Lunar Scientific Conference, 8th, pp. 949–999.

    Google Scholar 

  • Nakamura, Y.: 1983, ‘Seismic Velocity Structure of the Lunar Mantle’, J. Geophys. Res. 88, 677–686.

    Article  ADS  Google Scholar 

  • Neumann, G. A., Lemoine, F. G., and Zuber, M. T.: 1997, ‘What Does Gravity Tell Us about Crustal Structure’, Lunar Planet. Sci. XXVIII, 1015–1016.

    ADS  Google Scholar 

  • Neumann, G. A., Zuber, M. T., Smith, D. E., and Lemoine, F. G.: 1996, ‘The Lunar Crust: Global Structure and Signature of Major Basins’, J. Geophys. Res. 101, 16841–16863.

    Article  ADS  Google Scholar 

  • Nozette, S. et al.: 1994, ‘The Clementine Mission to the Moon: Scientific Overview’, Science 266, 1835–1839.

    Article  ADS  Google Scholar 

  • Parmentier, E. M., Zhong, S., and Zuber, M. T.: 2000, ‘On the Relationship between Chemical Differentiation and the Origin ofLunar Asymmetries’, Lunar Planet. Sci. XXXI 1614 (Abstract).

    ADS  Google Scholar 

  • Pieters, C., Tompkins, S., Head, J. W., and Hess, P. C.: 1997, ‘Mineralogy of the Mafic Anomaly in the South Pole-Aitken Basin: Implications for the Excavation of the Lunar Mantle’, Geophys. Res. Lett. 24, 1903–1906.

    Article  ADS  Google Scholar 

  • Ryder, G., Norman, M. D., and Taylor, G. J.: 1997, ‘The Complex Stratigraphy of the Highland Crust in the Serenitatis Region of the Moon Inferred from Mineral Fragment Chemistry’, Geochim. Cosmochim. Acta 61, 1083–1105.

    Article  ADS  Google Scholar 

  • Smith, D. E., Zuber, M. T., Neumann, G. A., and Lemoine, F. G.: 1997, ‘Topography of the Moon from Clementine Lidar’, J. Geophys. Res. 102, 1591–1611.

    Article  ADS  Google Scholar 

  • Snyder, G. A, Neal, C. R., Taylor, L. A., and Halliday, A. N.: 1995, ‘Processes Involved in the Formation of Magnesian-Suite Plutonic Rocks from the Highlands of the Earth’s Moon’, J. Geophys. Res. 100, 9365–9388.

    Article  ADS  Google Scholar 

  • Spudis, P. D.: 1993, The Geology of Multi-Ring Impact Basins, Cambridge University Press, 263 pp.

    Google Scholar 

  • Spudis, P. D., Reisse, R. A., and Gillis, J. J.: 1994, ‘Ancient Multi-Ring Basins on the Moon Revealed by Clementine Laser Altimetry’, Science 266, 1848–1851.

    Article  ADS  Google Scholar 

  • Taylor, L. A., Shervais, J. W., Hunter, R. H., Shih, D. Y., Bansal, B. M., Wooden, J., Nyquist, L. E., and Laul, J. C.: 1983, ‘Pre-4.2 AE Mare Basalt Volcanism in the Lunar Highlands’, Earth Planet. Sci. Lett. 66, 33–47.

    Article  ADS  Google Scholar 

  • Tera, F., Papanastassiou, D. A., and Wasserburg, G. J.: 1973, ‘A Lunar Catac1ysm at-3.9AE and the Structure of the Lunar Crust’, in Lunar Science IV, pp. 723–724.

    Google Scholar 

  • Warren, P. H.: 1986, ‘Anorthosite Assimilation and the Origin of the MglFe-Related Bimodality of Pristine Lunar Rocks: Support for the Magmasphere Hypothesis’, in Proceedings of the Lunar Scientific Coriference, 16th, J. Geophys. Res. 91, D330–D343.

    ADS  Google Scholar 

  • Warren, P. H. and Wasson, J. L.: 1979, ‘The Origin of KREEP’, Rev. Geophys. Space Physics 17, 73–88.

    Article  ADS  Google Scholar 

  • Whitaker, E. A.: 1981, ‘The Lunar Procellarum Basin’, in Multi-Ring Basins, Proceedings of the Lunar Scientific Conference, 12th, Part A, pp. 105–111.

    Google Scholar 

  • Wieczorek, M. A. and Phillips, R. J.: 1998, ‘Potential Anomalies on a Sphere: Applications to the Thickness of the Lunar Crust’, J. Geophys. Res. 103, 1715–1724.

    Article  ADS  Google Scholar 

  • Wieczorek, M. A., and Phillips, R. J.: 2000, ‘The Procellarum KREEP Terrane: Implications for Mare Volcanism and Lunar Evolution’, J. Geophys. Res. 105, 20417–20430.

    Article  ADS  Google Scholar 

  • Wilhelms, D. E.: 1987, The Geologic History of the Moon, US Geol. Survey Paper, 1348, 302 pp.

    Google Scholar 

  • Wilhelms, D. E. and Davis, D. E.: 1971, ‘Two Former Faces of the Moon’, Icarus 15, 368–372.

    Article  ADS  Google Scholar 

  • Wood, J. A., Dickey, J. S., Marvin, U. B., and Powell, B. N.: 1971, ‘Lunar Anorthosites and a Geophysical Model of the Moon’, in Proceedings of the Apollo 11 Lunar Scientific Conference, Geochim. Cosmochim. Acta (Supplement 1), pp. 965–968.

    ADS  Google Scholar 

  • Zuber, M. T., Smith, D. E., Lemoine, F. G., and Neumann, G. A.: 1994, ‘The Shape and Internal Structure of the Moon from the Clementine Mission’, Science 266, 1839–1843.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this paper

Cite this paper

McCallum, I.S. (2001). A New View of the Moon in Light of Data from Clementine and Prospector Missions. In: Barbieri, C., Rampazzi, F. (eds) Earth-Moon Relationships. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0800-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0800-6_23

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3855-3

  • Online ISBN: 978-94-010-0800-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics