The D-CIXS X-Ray Spectrometer on ESA’s SMART-1 Mission to the Moon

  • M. Grande
Conference paper


The D-CIXS (Demonstration of a Compact Imaging X-ray Spectrometer) instrument will provide high quality spectroscopic mapping of the Moon, the primary science target of the ESA SMART-1 mission. At the same time it will demonstrate a radically novel approach to building a type of instrument essential for the Mercury cornerstone mission. It consists of a high throughput spectrometer, which will perform spatially localised X-ray fluorescence spectroscopy, and a solar monitor to provide the calibration of the illumination necessary to produce a global map of absolute lunar elemental abundances. D-CIXS will provide the first global coverage of the lunar surface in X-rays, providing absolute measurements of Fe, Mg, Al and Si under normal solar conditions and several others during solar flare events. In combination with information to be obtained by the other instruments on SMART-1 and from previous missions, this information will enable a more detailed look at some of the fundamental questions that remain regarding the origin and evolution of the Moon and will help us to map Lunar resources more effectively.


Lunar Surface Lunar Planet Magma Ocean Lunar Prospector Solar Flare Event 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bussey, D. B. J. and Spudis, P. D.: 1997, ‘Compositional Analysis of the Orientale Basin Using Full Resolution Clementine Data: Some Preliminary Results’, GRL 24, 445.ADSCrossRefGoogle Scholar
  2. Clayton, R. N. and Mayeda, K.: 1975, Proc. Lunar Sci. Conf 6, 1761.ADSGoogle Scholar
  3. Delano, J. W.: 1980, PLPSC XI., 251–288.ADSGoogle Scholar
  4. Delano, J. W.: 1986, LPSC XVI, D201–D213.ADSGoogle Scholar
  5. Delano, J. W. and Fernandes, V. A.: 1998, LPSC XXIX (Abstract 1177).Google Scholar
  6. Dunkin, S. K., Grande, M., Casanova, I., Fernandes, V., Heather, D. J., Kellett, B., Muinonen, K., and Russell, S. S.: 2000, ‘Scientific Rationale for the D-CIXS X-Ray Spectrometer on Board ESA’s SMART-1 Mission to the Moon’, Planet. Space Sci. (submitted).Google Scholar
  7. Grande, M. et al.: 2000a, ‘Lunar Elemental Composition and Investigations with D-CIXS X-Ray Mapping Spectrometer on SMART-1, LPSC XXXI (Abstract 1442) (CDROM).Google Scholar
  8. Grande, M. et al.: 2000b, The D-CIXS X-Ray Mapping Spectrometer on SMART-1’, Planet. Space Sci. (submitted).Google Scholar
  9. Heisinger, H. et al.: 2000, LPSC XXXI (Abstract 1278).Google Scholar
  10. Hood, L. L. and Jones, J. H.: 1986, Lunar Planet. Sci. XVII, 354.ADSGoogle Scholar
  11. Jolliff, B. L., Gillis, J. J., Haskin, L. A., Korotev, R. L., and Wieczorek, M. A.: 2000, ‘Major Lunar Crustal Terranes: Surface Expressions and Crust-Mantle Origins’, JGR 105(E2), 4197–4216.ADSCrossRefGoogle Scholar
  12. Lucey, P. G., Taylor, G. J., Hawke, B. R., and Spudis, P. D.: 1996, ‘Iron and Titanium Concentrations in South Pole-Aitken Basin: Implications for Lunar Mantle Composition and Basin Formation’, LPSC XXVII, LPI, Houston, pp. 783–784 (Abstract).ADSGoogle Scholar
  13. Lucey, P. G., Taylor, G. J., and Hawke, B. R.: 1998, ‘FeO and TiO2 Concentrations in the South Pole-Aitken Basin: Implications for Mantle Composition and Basin Formation’, JGR 103, 3701–3708.ADSCrossRefGoogle Scholar
  14. Muinonen, K., Shkuratove, Yu. G., Ovcharenko, A., Piironen, J., Stankevich, D., Milos1avskaya, O., Keranen, S., and Josset. J.-L.: 2000, ‘The SMART-1 AMIE Experiment: Implication to the Lunar Opposition Effect’, Planet. Space Sci. (submitted).Google Scholar
  15. Papike, J. J. et al.: 1998, ‘Luna Samples’, Planet. Mater. Rev. Min. 36, 5-01-5-234.Google Scholar
  16. Pieters, C. M., Tompkins, S., He, G., Head, J. W., and Hess, P. C.: 1997, ‘Mineralogy of the Mafic Anomaly in the South Pole-Aitken Basin (SPA): Implications for the Excavation of the Lunar Mantle’, GRL 24, 1903–1906.ADSCrossRefGoogle Scholar
  17. Schonfeld, E. and Bielefeld, M. J.: 1978.Google Scholar
  18. Seeliger, H.: 1887, ‘Zur Theorie der Beleuchtung der grossen Planeten, insbesondere des Saturn’, Abh. Bayer. Akad. Wiss. Math. Naturwiss. Kl. 16,405–516.Google Scholar
  19. Shearer, C. K. and Papike, J. J.: 2000.Google Scholar
  20. Spudis, P. D., Reisse, R. A, and Gillis, J. J.: 1994, ‘Ancient Multi-Ringed Basins on the Moon Revealed by Clementine Laser Altimetry’, Science 266, 1848–1851.ADSCrossRefGoogle Scholar
  21. Taylor, L. A. et al.: 1991, The Lunar Source Book: A User’s Guide to the Moon, Cambridge University Press, 736 pp.Google Scholar
  22. Taylor, L. A and Carrier, W. D.: 1993, in J. Lewis, M. S. Mathews, and M. L. Guerrier (eds.), Resources of Near-Earth Space, University of Arizona Press, pp. 69–108.Google Scholar
  23. Taylor, S. R.: 1982, Planetary Science: A Lunar Perspective, Lunar and Planetary Institute, Houston, TX.Google Scholar
  24. Warren, P.: 1985, Annu. Rev. Earth Planet. Sci. 13,201.ADSCrossRefGoogle Scholar
  25. Weichert, U., Halliday, A N., Lee, D-C, Synder, G., Taylor, L. A, and Rumble D.: 2000, Lunar Planet. Sci. Conf. XXXI.Google Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • M. Grande
    • 1
  1. 1.Rutherford Appleton LaboratoryPlanets and Space GroupChilton, Didcot, OxfordshireUK

Personalised recommendations