Advertisement

Balance, Potential-Vorticity Inversion, Lighthill Radiation, and the Slow Quasimanifold

  • M. E. McIntyre
Part of the Fluid Mechanics and Its Applications book series (FMIA, volume 61)

Abstract

Practically our entire understanding of large-scale atmosphere-ocean dynamics depends on the notions of balance and potential-vorticity inversion. These are essential, for instance, for a clear understanding of the basic Rossby-wave propagation mechanism, or quasi-elasticity, that underlies almost every large-scale fluid-dynamical phenomenon of meteorological and oceanographical interest, from the global-scale transport of terrestrial greenhouse gases (and similar problems in the solar interior) to Rossby-wave-mediated global teleconnection, baroclinic and barotropic shear instability, vortex coherence, and vortex-core isolation. The ideas involved in understanding balance and inversion continue to hold special fascination because of their central importance both for theory and for applications, such as data assimilation, and the fact that complete mathematical understanding is still elusive. The importance for applications was adumbrated by Richardson in his pioneering study of numerical weather prediction. The importance for theory — and the exquisite subtlety involved — was adumbrated by Poincaré in his discovery of the homoclinic tangle, and by Lighthill in his discovery of the quadrupole nature of acoustic radiation by unsteady vortical motion.

Keywords

Rossby Wave Potential Vorticity Polar Vortex Surf Zone Slow Manifold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnol’d, V. I., 1978: Mathematical Methods of Classical Mechanics, New York: Springer-Verlag, 462 pp.Google Scholar
  2. Bokhove, O., and Shepherd, T. G., 1996: On Hamiltonian balanced dynamics and the slowest invariant manifold. J. Atmos. Sci., 53, 276–297.CrossRefGoogle Scholar
  3. Charney, J. G., 1948: On th e scale of atmospher ic motions. Geofysiske Publ., 17(2), 3–17.Google Scholar
  4. Ertel, H., 1942: Ein Neuer hydrodynamischer Wirbelsatz. Met. Z., 59, 271–281.Google Scholar
  5. Ford, R., 1994: Gravity wave radiation from vortex trains in rotating shallow water, J. Fluid Mech., 281, 81–118.CrossRefGoogle Scholar
  6. Ford, R., et al., 2000: Balance and the slow quasimanifold: some explicit results, J. Atmos. Sci., 57, 1236–1254.CrossRefGoogle Scholar
  7. Gent, P. R., McWilliams, J. C., 1984: Balanced models in isent ropic coordinates and the shallow water equations. Tellus, 36A, 166–171.CrossRefGoogle Scholar
  8. Gough, D. O., McIntyre, M. E., 1998: Inevitability of a magnetic field in the Sun’s radiative interior. Nature, 394, 755–757.CrossRefGoogle Scholar
  9. Haynes, P. H., 1989: The effect of barotropic instability on the nonlin ear evolution of a Rossbywave critical layer, J. Fluid Mech., 207, 231–266.CrossRefGoogle Scholar
  10. Hoskins, B. J., et al., 1985: On the use and sign ificance of isentropic potential-vorticity maps, Q. J. Roy. Meteorol. Soc., 111, 877–946; Corrigendum, 113, 402–404.CrossRefGoogle Scholar
  11. Killworth, P. D., McIntyre, M. E., 1985: Do Rossby-wave critical layers absorb, reflect or overreflect? J. Fluid Mech., 161, 449–492.CrossRefGoogle Scholar
  12. Kleinschmidt, E., 1950-1: Über Aufbau und Entstehung von Zyklonen (1–3 Teil). Met. Runds., 3, 1–6; 3, 54–61; 4, 89–96.Google Scholar
  13. Lahoz, W. A., et al., 1996: Vortex dynamics and the evolution of water vapour in the stratosphere of the southern hemisphere. Q. J. Roy. Meteorol. Soc., 122, 423–450.CrossRefGoogle Scholar
  14. Lighthill, M. J., 1952: On sound generated aerodynamically, Proc. Roy. Soc. Lond., A 211, 564–587.Google Scholar
  15. Manney, G. L., et al., 1994: Simulations of the February 1979 stratospheric sudden warming: model comparisons and three-dimensional evolution. Mon. Wea. Rev., 122, 1115–1140.CrossRefGoogle Scholar
  16. McIntyre, M. E., 1982: How well do we understand the dyn am ics of stratospheric warmings? J. Meteorol. Soc. Japan, 60, 37–65 [Special middle-atmosphere issue, ed. K. Ninomiya. NB: “latitude” should be “altitude” on page 39a line 2.]Google Scholar
  17. McIntyre, M. E., 2000: On global-scale atmospheric circulations. In: Perspectives in Fluid Dynamics: A Collective Introduction to Current Research, ed. G. K. Batchelor, H. K. Moffatt, M. G. Worster, 557–624. Cambridge, University Press, 631 pp. Corrigenda: (1) The symbols × for 3-dimensional vector products were all misprinted as GL; (2) the evaporation feedback at the tropical sea surface (p. 621) may be st rongly compensated radiatively; see Held and Soden 2000, Ann. Rev. Energy Environment, 25, 441–475.Google Scholar
  18. McIntyre, M. E., Norton, W. A., 2000: Potential-vorticity inversion on a hemisphere. J. Atmos. Sci., 57, 1214–1235. Corrigendum 58, 949 and on www.atm.damtp.cam.ac.uk/people/mem/CrossRefGoogle Scholar
  19. McIntyre, M. E., Palmer, T. N., 1983: Breaking planetary waves in the stratosphere. Nature, 305, 593–600.CrossRefGoogle Scholar
  20. McIntyre, M. E., Palmer, T. N., 1984: The “surf zone” in th e stratosphere. J. Atm. Terr. Phys., 46, 825–849.CrossRefGoogle Scholar
  21. McIntyre, M. E., Palmer, T. N., 1985: A not e on th e general concept of wave breaking for Rossby and gravity waves. Pure Appl. Geophys., 123, 964–975.CrossRefGoogle Scholar
  22. McIntyre, M. E., Roulstone, I., 1996: Hamiltonian ba lan ced mod els: con straints, slow manifolds, and velocity splitting. Forecasting Research Scientific Paper 41, Meteorological Office, U.K. Shortened and corrected version in revision for J. Fluid Mech.; full text and corrections available at http:// www.atm.damtp.cam.ac.uk/people/mem/Google Scholar
  23. McIntyre, M. E., Roulstone, I., 2001: Are there higher-accuracy analogues of semigeostrophic theory? In: Large-scale Atmosphere-Ocean Dynamics: II: Geometric Methods and Models (Proc. Newton Inst. Programme on Mathematics of Atmosp here and Ocean Dynamics), ed. I. Roulstone and J. Norbury. Cambridge, University Press, in press.Google Scholar
  24. Mohebalhojeh, A. R., Dritschel, D. G., 2001: Hierarchies of balance conditions for the f-plane shallow water equations. J. Atmos. Sci., in press.Google Scholar
  25. Mote, P. W., et al., 1996: An atmospheric tap e recorder: the imprint of tropical tropopause temperatures on stratospheric water vapor. J. Geophys. Res., 101, 3989–4006.CrossRefGoogle Scholar
  26. Mote, P. W., et al., 1998: Vertical velocity, vertical di ffusion, and dilution by midlatitude air in the tropical lower stratosphere. J. Geophys. Res., 103, 8651–8666.CrossRefGoogle Scholar
  27. Norton, W. A., 1994: Breaking Rossby waves in a model stratosphere diagnosed by a vortexfollowing coordinate system and a technique for advecting material contours. J. Atmos. Sci., 51, 654–673.CrossRefGoogle Scholar
  28. Norton, W. A., et al., 2000: Brewer-Dobson Workshop (report plus transcripts of invited lectures by J. R. Holton and A. W. Brewer). SPARC Newsletter 15, 25–32. Available from sparc.office@aerov.jussieu.fr, also http://www.aero.jussieu.fr/~sparc/ [sic].Google Scholar
  29. Plumb, R. A., McEwan, A. D., 1978: The instability of a forced standing wave in a viscous stratified fluid: a laboratory analogue of the quasi-biennial oscillation. J. Atmos. Sci., 35, 1827–1839.CrossRefGoogle Scholar
  30. Plumb, R. A., et al., 1994: Intrusions into the lower stratospheric Arctic vortex during the winter of 1991–92. J. Geophys. Res., 99, 1089–1105.CrossRefGoogle Scholar
  31. Rhines, P. B., 1975: Waves and turbulence on a beta-plane. J. Fluid Mech., 69, 417–443.CrossRefGoogle Scholar
  32. Riese, M., et al., 2001: Stratospheric transport by planetary wave mixing as observed during CRISTA-2. J. Geophys. Res., submitted. See also Riese, M., 2000: Remote Sensing and Modeling of the Earth’s Middle Atmosphere: Results of the CRISTA Experiment, Habilitation thesis, Bergische Universität, Fachbereich 8, 42097 Wuppertal 1, Germany.Google Scholar
  33. Robinson, W. A., 1988: Analysis of LIMS data by potential vorticity inversion. J. Atmos. Sci., 45, 2319–2342.CrossRefGoogle Scholar
  34. Rossby, C. G., 1936: Dynamics of steady ocean currents in the light of experimental fluid mechanics. Mass. Inst. of Technology and Woods Hole Oc. Instn. Papers in Physical Oceanography and Meteorology, 5(1), 1–43. [Material PV conservation: Equation (75).]Google Scholar
  35. Salmon, R., 1983: Practical use of Hamilton’s principle. J. Fluid Mech., 132, 431–444.CrossRefGoogle Scholar
  36. Salmon, R., 1985: New equations for nearly geostrophic flow. J. Fluid Mech., 153, 461–477.CrossRefGoogle Scholar
  37. Salmon, R., 1988: Semigeostrophic theory as a Dirac-bracket projection. J. Fluid Mech., 196, 345–358.CrossRefGoogle Scholar
  38. Saujani, S., and Shepherd, T.G., 2001: Comments on “Balance and the Slow Quasimanifold: Some Explicit Results”. J. Atmas. Sci. 58, submitted; Ford, R., et al., 2001: Reply, J. Almos. Sci. 58, submitted.Google Scholar
  39. Stewart, R. W., Thomson, R. E., 1977: Re-examination of vorticity transfer theory. Proc. Roy. Soc. Lond., A354, 1–8.Google Scholar
  40. Waugh, D. W., Plumb, R. A., 1994: Contour advection with surgery: a technique for investigating finescale structure in tracer transport. J. Almos. Sci., 51, 530–540.CrossRefGoogle Scholar
  41. Waugh, D. W., et al., 1994: Transport of material out of the stratospheric Arctic vortex by Rossby wave breaking. J. Geophys. Res., 99, 1071–1088.CrossRefGoogle Scholar
  42. Whitaker, J. S., 1993: A comparison of primitive and balance equation simulations of baroclinic waves. J. Almos. Sci., 50, 1519–1530.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • M. E. McIntyre
    • 1
  1. 1.Centre for Atmospheric Science at the Department of Applied Mathematics and Theoretical PhysicsCambridgeEngland

Personalised recommendations