A Statistical Equilibrium Model of Zonal Shears and Embedded Vortices in a Jovian Atmosphere

  • Bruce Turkington
Conference paper
Part of the Fluid Mechanics and Its Applications book series (FMIA, volume 61)

Abstract

A prominent feature of two-dimensional and quasi-geostrophic turbulence is the formation of large-scale coherent structures among the smallscale fluctuations of the vorticity field. This separation-of-scales behavior is a consequence of the conservation of both energy and enstrophy by the dynamics, which results in a net flux of energy toward large scales and a net flux of enstrophy toward small scales. Many flows of this kind, whether free-decaying flows or weakly driven, can therefore be described approximately as coherent, deterministic structures on the large scales and disorganized, random motions on the small scales.

Keywords

Entropy Vortex Manifold Vorticity Advection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    V. Arnold. Math ematical Methods in Classical Mechani cs. Springer-Verla g, New York, 1982.Google Scholar
  2. [2]
    D. P. Bertsekas. Constrain ed optimization and Lagrange multipli er methods, Academic Press, New York, 1982.Google Scholar
  3. [3]
    M. DiBattista, A. Majda and B. Turkington. Prototype geophysical vortex structur es via large-scale statistical theory. Geophys. Astrophys. Fluid Dyn., 89:235–283, 1998.CrossRefGoogle Scholar
  4. [4]
    T. E. Dowling. Dynamics of Jov ian atmospheres. Annual Rev. Fluid Mech. 27:293–334, 1995.CrossRefGoogle Scholar
  5. [5]
    R. S. Ellis. Entropy, Larqe Deviations, and Statistical Mechanics. Springer-Verlag, 1985.Google Scholar
  6. [6]
    R. S. Ellis, K. Haven, and B. Turkington. Large deviation principles and complete equivalence and non equivalence resul ts for pure and mixed ensembles. To appear in J. Stat. Phys., 2000.Google Scholar
  7. [7]
    R. S. Ellis, K. Haven, and B. Turkington. Nonequivalent statistical equilibrium ensembles and refined stability theorems for most probable flows. Preprint, 2000.Google Scholar
  8. [8]
    G. Holloway. Eddies, waves, circulat ion and mixing: statist ical geofluid mechanics. Annual Rev. Fluid Mech. 18:91–147, 1986.CrossRefGoogle Scholar
  9. [9]
    A. P. Ingersoll and P. G. Cuong. Numerical model of long-lived Jovi an vortices. J. Atmos. Sci. 38:2067–2076, 1981.CrossRefGoogle Scholar
  10. [10]
    P. S. Marcus. Jupiter’ s Great Red Spot and other vortices. Annual Rev. Astrophys. 31:523–273, 1993.CrossRefGoogle Scholar
  11. [11]
    J. Pedlosky. Geophysical Fluid Dynamics. Springer, 1979.Google Scholar
  12. [12]
    L. M. Polvani, J. C. McWilliams, M. A. Spall and R. Ford, The coherent structures of shallow-water turbulence: Deformation-radius effects, cyclon e/anticyclone asymmetry and gravity-wave generation, Chaos 4(2): 177–186, 1994.CrossRefGoogle Scholar
  13. [13]
    P. Rhines. Geostrophic turbulence. Annual Rev. Fluid Mech. 11:404–441, 1979.CrossRefGoogle Scholar
  14. [14]
    B. Turkington. Statistical equilibrium measures and coherent states in twodimensional turbulence. Commun. Pure Appl. Math. 52:781–809, 1999.CrossRefGoogle Scholar
  15. [15]
    B. Turkington and N. Whitaker, Statistical equilibrium comput ations of coherent structures in turbulent shear layers. SIAM J. Sci. Comput. 17:1414–1433, 1996.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • Bruce Turkington
    • 1
  1. 1.Department of Mathematics and StatisticsUniversity of MassachusettsAmherstUSA

Personalised recommendations