Skip to main content

Role of epithelial cells in mucosal immunobiology

  • Chapter
  • 95 Accesses

Part of the book series: Immunology and Medicine Series ((IMME,volume 31))

Abstract

The intestinal mucosa constitutes an immunological organ where oral tolerance and defense against harmful organisms develops. Antigens must cross the intestinal epithelium in a controlled manner, since bacteria or their products are a primary risk factor for the development of intestinal inflammation (1, 2). The epithelium lining of the intestine is composed of a monolayer of cells which include transporting enterocytes, goblet cells, enteroendocrine cells, M cells, and Paneth cells. These intestinal epithelial cells are joined together at their apical poles by tight junctions that open and close in response to signals from the epithelium itself, the lamina propria or upon events in the lumen.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schultz, M., Tonkonogy S.L., Sellon R.K., Veltkamp C., Godfrey V.L., Kwon J., Grenther W.B., Balish E., Horak I., and Sartor R.B. IL-2-deficient mice raised under germfree conditions develop delayed mild focal intestinal inflammation. Am J Physiol 1999;276:G1461–72.

    PubMed  CAS  Google Scholar 

  2. Sellon, R. K., Tonkonogy S., Schultz M., Dieleman L.A., Grenther W., Balish E., Rennick D.M., and Sailor R.B. Resident enteric bacteria are necessary for development of spontaneous colitis and immune system activation in interleukin-l0-deficient mice. Infect Immun 1998;66:5224–31.

    PubMed  CAS  Google Scholar 

  3. Mashimo, H., Wu D. C., Podolsky D. K., and Fishman M. C. Impaired defense of intestinal mucosa in mice lacking intestinal trefoil factor. Science 1996;274:262–5.

    Article  PubMed  CAS  Google Scholar 

  4. Babyatsky, M. W., deBeaumont M., Thim L., and Podolsky D. K. Oral trefoil peptides protect against ethanol-and indomethacin-induced gastric injury in rats. Gastroenterology 1996;110:489–97.

    Article  PubMed  CAS  Google Scholar 

  5. Podolsky, D. K. Mucosal immunity and inflammation. V. Innate mechanisms of mucosal defense and repair: the best offense is a good defense. Am J Physiol 1999;277:G495–9.

    PubMed  CAS  Google Scholar 

  6. Maury, J., Nicoletti C., Guzzo-Chambraud L., and Maroux S. The filamentous brush border glycocalyx, a mucin-like marker of enterocyte hyper-polarization. Eur J Biochem 1995;228:323–31.

    Article  Google Scholar 

  7. Ouellette, A. J., and Selsted M. E. Paneth cell defensins: endogenous peptide components of intestinal host defense. Faseb J 1996;10:1280–9.

    PubMed  CAS  Google Scholar 

  8. Ouellette, A. J. IV. Paneth cell antimicrobial peptides and the biology of the mucosal barrier. Am J Physiol 1999;277:G257–61.

    PubMed  CAS  Google Scholar 

  9. Lamm, M. E. Current concepts in mucosal immunity. IV. How epithelial transport of IgA antibodies relates to host defense. Am J Physiol 1998;274:G614–7.

    Google Scholar 

  10. Lamm, M. E. Review article: Epithelial disposition of antigen. Aliment Pharmacol Ther 1997;11 Suppl 3:40–4.

    Google Scholar 

  11. Mazanec, M. B., Kaetzel C. S., Lamm M. E., Fletcher D., Peterra J., and Nedrud J. G.. Intracellular neutralization of Sendai and influenza viruses by IgA monoclonal antibodies. Adv Exp Med Biol. 1995;317A:651–4.

    Article  Google Scholar 

  12. Burns, J. W., Siadat-Pajouh M., Krishnaney A. A., and Greenberg H. B. Protective effect of rotavirus VP6-specific IgA monoclonal antibodies that lack neutralizing activity. Science 1996;272:104–7.

    Article  PubMed  CAS  Google Scholar 

  13. Gan, Y. J., Chodosh J., Morgan A., and Sixbey J. W. Epithelial cell polarization is a determinant in the infectious outcome of immunoglobulin A-mediated entry by Epstein-Barr virus. J Virol 1997;71:519–26.

    PubMed  CAS  Google Scholar 

  14. MacDermott, R. P., Nash G. S., and Nahm M. H. Antibody secretion by human intestinal mononuclear cells from normal controls and inflammatory bowel disease patients. Immunol Invest 1989;18:449–57.

    Article  PubMed  CAS  Google Scholar 

  15. Salomon, P., Pizzimenti A., Panja A., Reisman A., and Mayer L. The expression and regulation of class II antigens in normal and inflammatory bowel disease peripheral blood monocytes and intestinal epithelium. Autoimmunity 1991;19:141–9.

    Article  Google Scholar 

  16. Neutra, M. R., Phillips T. L., Mayer E. L., and Fishkind D. J. Transport of membrane-bound macromolecules by M cells in follicle-associated epithelium of rabbit Peyer’s patch. Cell Tissue Res 1987;247:537–46.

    Article  PubMed  CAS  Google Scholar 

  17. Farstad, I. N., Halstensen T. S., Fausa O., and Brandtzaeg P. Heterogeneity of M-cell-associated B and T cells in human Peyer’s patches. Immunology 1994;83:457–64.

    PubMed  CAS  Google Scholar 

  18. Weltzin, R., Lucia-Jandris P., Michetti P., Fields B. N., Kraehenbuhl J. P., and Neutra M. R. Binding and transepithelial transport of immunoglobulins by intestinal M cells: demonstration using monoclonal IgA antibodies against enteric viral proteins. J Cell Biol 1989;108:1673–85.

    Article  PubMed  CAS  Google Scholar 

  19. Zhou, F., Kraehenbuhl J. P., and Neutra M. R. Mucosal IgA response to rectally administered antigen formulated in IgA- coated liposomes. Vaccine 1995;13:637–44.

    Article  PubMed  CAS  Google Scholar 

  20. Corthesy, B., Kaufmann M., Phalipon A., Peitsch M., Neutra M. R., and Kraehenbuhl J. P. A pathogen-specific epitope inserted into recombinant secretory immunoglobulin A is immunogenic by the oral route. J Biol Chem 1996;271:33670–7.

    Article  PubMed  CAS  Google Scholar 

  21. Smith, M. W., James P. S., and Tivey D. R. M cell numbers increase after transfer of SPF mice to a normal animal house environment. Am J Pathol 1987;128:385–9.

    PubMed  CAS  Google Scholar 

  22. Neutra, M. R. Current concepts in mucosal immunity. V Role of M cells in transepithelial transport of antigens and pathogens to the mucosal immune system. Am J Physiol 1998;274:G785–91.

    Google Scholar 

  23. Amerongen, H. M., Wilson G. A., Fields B. N., and Neutra M. R. Proteolytic processing of reovirus is required for adherence to intestinal M cells. J Virol 1994;68:8428–32.

    PubMed  CAS  Google Scholar 

  24. Jones, B. D., Ghori N., and Falkow S. Salmonella typhimurium initiates murine infection by penetrating and destroying the specialized epithelial M cells of the Peyer’s patches. J Exp Med 1994;180:15–23.

    Article  PubMed  CAS  Google Scholar 

  25. Neutra, M. R., Pringault E., and Kraehenbuhl J. P. Antigen sampling across epithelial barriers and induction of mucosal immune responses. Annu Rev Immunol 1996;14:275–300.

    Article  PubMed  CAS  Google Scholar 

  26. Reinecker, H. C., and Podolsky D. K. Human intestinal epithelial cells express functional cytokine receptors sharing the common gamma c chain of the interleukin 2 receptor. Proc Natl Acad Sci (USA) 1995;92:8353–7.

    Article  CAS  Google Scholar 

  27. Reinecker, H. C., MacDermott R. P., Mirau S., Dignass A., and Podolsky D. K. Intestinal epithelial cells both express and respond to interleukin 15. Gastroenterology 1996;111:1706–13.

    Article  PubMed  CAS  Google Scholar 

  28. Dignass, A. U., and Podolsky D. K. Interleukin 2 modulates intestinal epithelial cell function in vitro. Exp Cell Res 1996;225:422–9.

    Article  PubMed  CAS  Google Scholar 

  29. Breese, E., Braegger C. P., Corrigan C. J., Walker-Smith J. A., and MacDonald T. T. Interleukin-2- and interferon-gamma-secreting T cells in normal and diseased human intestinal mucosa. Immunology 1993;78:127–31.

    PubMed  CAS  Google Scholar 

  30. Giri, J. G., Anderson D. M., Kumaki S., Park L. S., Grabstein K. H., and Cosman D. IL-15, a novel T cell growth factor that shares activities and receptor components with IL-2. J Leukoc Biol 1995;57:763–6.

    PubMed  CAS  Google Scholar 

  31. Ebert, E. C. Interleukin 15 is a potent stimulant of intraepithelial lymphocytes. Gastroenterology 1998;115:1439–45.

    Article  PubMed  CAS  Google Scholar 

  32. Meijssen, M. A., Brandwein S. L., Reinecker H. C., Bhan A. K., and Podolsky D. K. Alteration of gene expression by intestinal epithelial cells precedes colitis in interleukin-2-deficient mice. Am J Physiol 1998;274:G472–9.

    PubMed  CAS  Google Scholar 

  33. Watanabe, M., Ueno Y., Yajima T., Iwao Y., Tsuchiya M., Ishikawa H., Aiso S., Hibi T., and Ishii H. Interleukin 7 is produced by human intestinal epithelial cells and regulates the proliferation of intestinal mucosal lymphocytes. J Clin Invest 1995;95:2945–53.

    Article  PubMed  CAS  Google Scholar 

  34. Yamada, K., Shimaoka M., Nagayama K., Hiroi T., Kiyono H., and Honda T. Bacterial invasion induces interleukin-7 receptor expression in colonic epithelial cell line, T84. Eur J Immunol 1997;27:3456–60.

    Google Scholar 

  35. Colgan, S. P., Resnick M. B., Parkos C. A., Delp-Archer C., McGuirk D., Bacarra A. E., Weller P. F., and Madara J. L. IL-4 directly modulates function of a model human intestinal epithelium. J Immunol 1994;153:21229.

    Google Scholar 

  36. Madara, J. L., and Stafford J. Interferon-gamma directly affects barrier function of cultured intestinal epithelial monolayers. J Clin Invest 1989;83:724–27.

    Article  PubMed  CAS  Google Scholar 

  37. Niessner, M., and Volk B. A. Altered Thl/Th2 cytokine profiles in the intestinal mucosa of patients with inflammatory bowel disease as assessed by quantitative reversed transcribed polymerase chain reaction (RT-PCR). Clin Exp Immunol 1995;101:428–35.

    Article  PubMed  CAS  Google Scholar 

  38. Konturek, S. J., Brozozowski T., Bielanski W., Warzecha Z., and Drozdowicz D. Epidermal growth factor in the gastroprotective and ulcer-healing actions of sucralfate in rats. Am J Med 1989;86:32–37.

    Article  PubMed  CAS  Google Scholar 

  39. Scheving, L. A., Shiurba R. A., Nguyen T. D., and Gray G. M. Epidermal growth factor receptor of the intestinal enterocyte. Localization to laterobasal but not brush border membrane. J Biol Chem 1998;264:1735–41.

    Google Scholar 

  40. Lowes, J. R., Priddle J. D., and Jewell D. P. Production of epithelial cell growth factors by lamina propria mononuclear cells. Gut 1992;33:39–43.

    Article  PubMed  CAS  Google Scholar 

  41. Jobson, T. M., Billington C. K., and Hall I. P. Regulation of proliferation of human colonic subepithelial myofibroblasts by mediators important in intestinal inflammation. J Clin Invest 1998;101:2650–57.

    Article  PubMed  CAS  Google Scholar 

  42. Uribe, J. M., and Barrett K. E. Nonmitogenic actions of growth factors: an integrated view of their role in intestinal physiology and pathophysiology. Gastroenterology 1997;112:255–268.

    PubMed  CAS  Google Scholar 

  43. Goodlad, R. A., Raja K. B., Peters T. J., and Wright N. A. Effects of urogastrone-epidermal growth factor on intestinal brush border enzymes and mitotic activity. Gut 1991;32:994–8.

    Article  PubMed  CAS  Google Scholar 

  44. Chowdhury, A., Fukuda R., and Fukumoto S. Growth factor mRNA expression in normal colorectal mucosa and in uninvolved mucosa from ulcerative colitis patients. J Gastroenterol 1996;31:353–60.

    Article  PubMed  CAS  Google Scholar 

  45. Alexander, R. J., Panja A., Kaplan-Liss E., Mayer L., and Raicht R. F. Expression of growth factor receptor-encoded mRNA by colonic epithelial cells is altered in inflammatory bowel disease. Dig Dis Sci 1995;40:485–94.

    Article  PubMed  CAS  Google Scholar 

  46. Archer, S., Meng S., Wu J., Johnson J., Tang R., and Hodin R. Butyrate inhibits colon carcinoma cell growth through two distinct pathways. Surgery 1998;124:248–53.

    Article  PubMed  CAS  Google Scholar 

  47. Normanno, N., De Luca A., Salomon D. S., and Ciardiello F. Epidermal growth factor-related peptides as targets for experimental therapy of human colon carcinoma. Cancer Detect Prey 1998;22:62–7.

    CAS  Google Scholar 

  48. Egger, B., Carey H. V., Procaccino F., Chai N. N., Sandgren E. P., Lakshmanan J., Buslon V. S., French S. W., Buchler M. W., and Eysselein V. E. Reduced susceptibility of mice overexpressing transforming growth factor alpha to dextran sodium sulphate induced colitis. Gut 1998;43:64–70.

    Article  PubMed  CAS  Google Scholar 

  49. Egger, B., Procaccino F., Lakshmanan J., Reinshagen M., Hoffmann P., Patel A., Reuben W., Gnanakkan S., Liu L., Barajas L., and Eysselein V. E. Mice lacking transforming growth factor alpha have an increased susceptibility to dextran sulfate-induced colitis. Gastroenterology 1997;113:825–32.

    Article  PubMed  CAS  Google Scholar 

  50. Goke, M., Kanai M., Lynch-Devaney, and Podolsky D. K. Rapid mitogenactivated protein kinase activation by transforming growth factor alpha in wounded rat intestinal epithelial cells. Gastroenterology 1998;114:697–705.

    Article  PubMed  CAS  Google Scholar 

  51. Koyama, S. Y., and Podolsky D. K. Differential expression of transforming growth factors alpha and beta in rat intestinal epithelial cells. J Clin Invest 1989;83:1768–73.

    Article  PubMed  CAS  Google Scholar 

  52. Suemori, S., Ciacci C., and Podolsky D. K. Regulation of transforming growth factor expression in rat intestinal epithelial cell lines. J Clin Invest 1991;87:2216–21.

    Article  PubMed  CAS  Google Scholar 

  53. Beck, P. L., and Podolsky D. K. Growth factors in inflammatory bowel disease. Inflamm Bowel Dis 1999;5:44–60.

    Article  PubMed  CAS  Google Scholar 

  54. McKaig BC, Makh SS, Hawkey CJ, Podolsky DK, Mahida YR. Normal human colonic subepithelial myofibroblasts enhance epithelial migration (restitution) via TGF(33. Am J Physiol. (Gastrointest. Liver Physiol.). 1999;276:G1087–93.

    CAS  Google Scholar 

  55. Dignass, A. U., Lynch-Devaney K., and Podolsky D. K. Hepatocyte growth factor/scatter factor modulates intestinal epithelial cell proliferation and migration. Biochem Biophys Res Commun 1994;202:701–9.

    Article  PubMed  CAS  Google Scholar 

  56. Dignass, A., Lynch-Devaney K., Kindon H., Thim L., and Podolsky D. K. Trefoil peptides promote epithelial migration through a transforming growth factor beta-independent pathway. J Clin Invest 1994;94:376–83.

    Article  PubMed  CAS  Google Scholar 

  57. Dignass, A. U., Tsunekawa S., and Podolsky D. K. Fibroblast growth factors modulate intestinal epithelial cell growth and migration. Gastroenterology 1994;106:1254–62.

    PubMed  CAS  Google Scholar 

  58. Ciacci, C., Lind S. E., and Podolsky D. K. Transforming growth factor beta regulation of migration in wounded rat intestinal epithelial monolayers. Gastroenterology 1993;105:93–101.

    PubMed  CAS  Google Scholar 

  59. Ciacci, C., Mahida Y. R., Dignass A., Koizumi M., and Podolsky D. K. Functional interleukin-2 receptors on intestinal epithelial cells. J Clin Invest 1993;92:527–32.

    Article  PubMed  CAS  Google Scholar 

  60. Barnes, P. J., and Karin M. Nuclear factor-kappaB: a pivotal transcription factor in chronic inflammatory diseases. N Engl J Med 1997;336:1066–71.

    Article  PubMed  CAS  Google Scholar 

  61. Awane, M., Andres P. G., Li D. J., and Reinecker H. C. NF-kappa B-inducing kinase is a common mediator of IL-17-, TNF-alpha-, and IL-1 beta-induced chemokine promoter activation in intestinal epithelial cells. J Immunol 1999;162:5337–44.

    PubMed  CAS  Google Scholar 

  62. McAlindon M, Hawkey CJ & Mahida YR. Expression of interleukin-1 ß and interleukin-113 converting enzyme by macrophages in health and inflammatory bowel disease. Gut. 1998;42:214–219.

    Article  PubMed  CAS  Google Scholar 

  63. Cominelli, F., Nast C. C., Duchini A., and Lee M. Recombinant interleukin-1 receptor antagonist blocks the proinflammatory activity of endogenous interleukin-1 in rabbit immune colitis. Gastroenterology 1992;103:65–71.

    PubMed  CAS  Google Scholar 

  64. Seydel, K. B., Li E., Swanson P. E., and Stanley S. L. Human intestinal epithelial cells produce proinflammatory cytokines in response to infection in a SCID mouse-human intestinal xenograft model of amebiasis. Infect Immun 1997;65:1631–39.

    PubMed  CAS  Google Scholar 

  65. Rogler, G., and Andus T. Cytokines in inflammatory bowel disease. World J Surg 1998;22:382–89.

    Article  PubMed  CAS  Google Scholar 

  66. Cominelli, F., and Pizarro T. T. Interleukin-1 and interleukin-1 receptor antagonist in inflammatory bowel disease. Aliment Pharmacol Ther 1996;10:49–53.

    PubMed  CAS  Google Scholar 

  67. Kojima, H., Aizawa Y., Yanai Y., Nagaoka K., Takeuchi M, Ohta T., Ikegami H., Ikeda M., and Kurimoto M. An essential role for NF-kappa B in IL-18-induced IFN-gamma expression in KG-1 cells. J Immunol 1999;162:5063–69.

    PubMed  CAS  Google Scholar 

  68. Pizarro, T. T., Michie M. H., Bentz M., Woraratanadharm J., Smith M. F., Jr., Foley E., Moskaluk C. A., Bickston S. J., and Cominelli F. IL-18, a novel immunoregulatory cytokine, is up-regulated in Crohn’s disease: expression and localization in intestinal mucosal cells. J Immunol 1999;162:6829–35.

    PubMed  CAS  Google Scholar 

  69. Yao, Z., Spriggs M. K., Deny J. M., Strockbine L., Park L. S., VandenBos T., Zappone J. D., Painter S. L., and Armitage R. J. Molecularcharacterization of the human interleukin (IL)-17 receptor. Cytokine 1997;9:794–800.

    Google Scholar 

  70. Yao, Z., Painter S. L., Fanslow W. C., Ulrich D., Macduff B. M., Spriggs M. K., and Armitage R. J. Human IL-17: a novel cytokine derived from T cells. J Immunol 1995;155:5483–86.

    PubMed  CAS  Google Scholar 

  71. Yao, Z., Fanslow W. C., Seldin M. F., Rousseau A. M., Painter S. L., Comeau M. R., Cohen J. I., and Spriggs M. K. Herpesvirus Saimiri encodes a new cytokine, IL-17, which binds to a novel cytokine receptor. Immunity 1995;3:811–21.

    Article  PubMed  CAS  Google Scholar 

  72. Fossiez, F., Djossou O., Chomarat P., Flores-Romo L., Ait-Yahia S., Maat C., Pin J. J., Garrone P., Garcia E., Saeland S., Blanchard D., Gaillard C., Das Mahapatra B., Rouvier, E., Golstein P., Banchereau J., and Lebecque S. T cell interleukin-17 induces stromal cells to produce proinflammatory and hematopoietic cytokines. J Exp Med 1996;183:2593–2603.

    Article  PubMed  CAS  Google Scholar 

  73. Laan, M., Cui Z. H., Hoshino H., Lotvall J., Sjostrand M., Gruenert D. C., Skoogh B. E., and Linden A. Neutrophil recruitment by human IL-17 via C-X-C chemokine release in the airways. J Immunol 1999;162:2347–52.

    PubMed  CAS  Google Scholar 

  74. Breese, E., and MacDonald T. T. TNF alpha secreting cells in normal and diseased human intestine. Adv Exp Med Biol 1995;371:821–24.

    Google Scholar 

  75. Jung, H. C., Eckmann L., Yang S. K., Panja A., Fierer J., MorzyckaWroblewska E., and Kagnoff M. F. A distinct array of proinflammatory cytokines is expressed in human colon epithelial cells in response to bacterial invasion. J Clin Invest 1995;95:55–65.

    Article  PubMed  CAS  Google Scholar 

  76. Kvale, D., Lovhaug D., Sollid L. M., and Brandtzaeg P. Tumor necrosis factor-alpha up-regulates expression of secretory component, the epithelial receptor for polymeric Ig. J Immunol 1988;140:3086–89.

    PubMed  CAS  Google Scholar 

  77. Targan, S. R., Hanauer S. B., van Deventer S. J., Mayer L., Present D. H., Braakman T., DeWoody K. L., Schaible T. F., and Rutgeerts P. J. A short-term study of chimeric monoclonal antibody cA2 to tumor necrosis factor alpha for Crohn’s disease. Crohn’s Disease cA2 Study Group. N Engl J Med 1997;337:1029–35.

    Article  PubMed  CAS  Google Scholar 

  78. Cario, E., Rosenberg I. M., Brandwein S. L., Beck P. L., Reinecker H. C., and Podolsky D. K. Lipopolysaccharide activates distinct signaling pathways in intestinal epithelial cell lines expressing Toll-like receptors. J Immunol 2000;164:966–72.

    PubMed  CAS  Google Scholar 

  79. Mahida, Y. R., Kurlac L., Gallagher A., and. Hawkey C. J. High circulating concentrations of interleukin-6 in active Crohn’s disease but not ulcerative colitis. Gut 1991;32:1531–34.

    CAS  Google Scholar 

  80. Reimund, J. M., Wittersheim C., Dumont S., Muller C. D., Kenney J. S., Baumann R., Poindron P., and Duclos B. Increased production of tumour necrosis factor-alpha interleukin-1 beta, and interleukin-6 by morphologically normal intestinal biopsies from patients with Crohn’s disease. Gut 1996;39:684–89.

    Article  PubMed  CAS  Google Scholar 

  81. Fierer, J., Eckmann L., and Kagnoff M. IL-8 secreted by epithelial cells invaded by bacteria. Infect Agents Dis 1993;2:255–58.

    PubMed  CAS  Google Scholar 

  82. Eckmann, L., Jung H. C., Schurer-Maly C., Panja A., Morzycka-Wroblewska E., and Kagnoff M. F. Differential cytokine expression by human intestinalepithelial cell lines: regulated expression of interleukin 8. Gastroenterology 1993;105:1689–97.

    Google Scholar 

  83. Izutani, R., Ohyanagi H., and MacDermott R. P. Quantitative PCR for detection of femtogram quantities of interleukin-8 mRNA expression. Microbiol Immunol 1994;38:233–37.

    PubMed  CAS  Google Scholar 

  84. Mahida, Y. R., Makh S., Hyde S., Gray T., and Borriello S. P. Effect of Clostridium difficile toxin A on human intestinal epithelial cells: induction of interleukin 8 production and apoptosis after cell detachment. Gut 1996;38:337–47.

    Article  PubMed  CAS  Google Scholar 

  85. Daig, R., Andus T., Aschenbrenner E., Falk W., Scholmerich J., and Gross V. Increased interleukin 8 expression in the colon mucosa of patients with inflammatory bowel disease. Gut 1996;38:216–22.

    Article  PubMed  CAS  Google Scholar 

  86. Mahida YR, Ceska M, Effenberger F, Kurlac L, Lindley I & Hawkey CJ. Enhanced synthesis of NAP1/IL8 in active ulcerative colitis. Clin Sci. 1992;82:273–275.

    PubMed  CAS  Google Scholar 

  87. Reinecker, H. C., Loh E. Y., Ringler D. J., Mehta A., Rombeau J. L., and MacDermott R. P. Monocyte-chemoattractant protein 1 gene expression in intestinal epithelial cells and inflammatory bowel disease mucosa. Gastroenterology 1995;108:40–50.

    Article  PubMed  CAS  Google Scholar 

  88. Wedemeyer, J., Lorentz A., Goke M., Meier P. N., Flemming P., Dahinden C. A., Manns M. P., and Bischoff S. C. Enhanced production of monocyte chemotactic protein 3 in inflammatory bowel disease mucosa. Gut 1999;44:629–35.

    Article  PubMed  CAS  Google Scholar 

  89. Z’Graggen, K., Walz A., Mazzucchelli L.,. Strieter R. M, and Mueller C. The C-X-C chemokine ENA-78 is preferentially expressed in intestinal epithelium in inflammatory bowel disease. Gastroenterology 1997;113:80816.

    Google Scholar 

  90. Muehlhoefer, A., Saubermann L. J., Gu X., Luedtke-Heckenkamp K., Xavier R., Blumberg R. S., Podolsky D. K., MacDermott R. P., and Reinecker H. C. Fractalkine is an epithelial and endothelial cell-derived chemoattractant for intraepithelial lymphocytes in the small intestinal mucosa. J Immunol 2000;164:3368–76.

    PubMed  CAS  Google Scholar 

  91. Wells, T. N., and Peitsch M. C. The chemokine information source: identification and characterization of novel chemokines using the WorldWideWeb and expressed sequence tag databases. J Leukoc Biol 1997;61:545–50.

    PubMed  CAS  Google Scholar 

  92. Pan, Y., Lloyd C., Zhou H., Dolich S., Deeds J., Gonzalo J. A., Vath J., Gosselin M., Ma J., Dussault B., Woolf E., Alperin G., Culpepper J., Gutierrez-Ramos J. C., and Gearing D. Neurotactin, a membrane-anchored chemokine upregulated in brain inflammation. Nature 1997;387:611.

    Article  Google Scholar 

  93. Bazan, J. F., Bacon K. B., Hardiman G., Wang W., Soo K., Rossi D., Greaves D. R., Zlotnik A., and Schall T. J. A new class of membrane-bound chemokine with a CX3C motif. Nature 1997;385:640–4.

    Article  PubMed  CAS  Google Scholar 

  94. Witt, D. P., and Lander A. D. Differential binding of chemokines to glycosaminoglycan subpopulations. Curr Biol 1994;4:394–400.

    Article  PubMed  CAS  Google Scholar 

  95. Delezay, O., Koch N., Yahi N., Hammache D., Tournes C., Tamalet C., and Fantini J. Co-expression of CXCR4/fusin and galactosylceramide in the human intestinal epithelial cell line HT-29. Aids 1997;11:1311–8.

    Article  PubMed  CAS  Google Scholar 

  96. Dwinell, M. B., Eckmann L., Leopard J. D., Varki N. M., and Kagnoff M. F. Chemokine receptor expression by human intestinal epithelial cells. Gastroenterology 1999;117:359–67.

    Article  PubMed  CAS  Google Scholar 

  97. Jordan, N. J., Kolios G., Abbot S. E., Sinai M. A., Thompson D. A., Petraki K., and Westwick J. Expression of functional CXCR4 chemokine receptors on human colonic epithelial cells. J Clin Invest 1999;104:1061–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Kluwer Academic Publishers

About this chapter

Cite this chapter

Luedtke-heckenkamp, K., Reinecker, H.C. (2001). Role of epithelial cells in mucosal immunobiology. In: Mahida, Y.R. (eds) Immunological Aspects of Gastroenterology. Immunology and Medicine Series, vol 31. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0790-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0790-0_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3852-2

  • Online ISBN: 978-94-010-0790-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics