Skip to main content

Regulation of intestinal immune responses to local antigens: oral tolerance vs immunopathology

  • Chapter
  • 92 Accesses

Part of the book series: Immunology and Medicine Series ((IMME,volume 31))

Abstract

The gut-associated lymphoid tissues (GALT) are the largest in the body and can mount a wide array of different effector mechanisms to counter the continual challenge of potential pathogens. Mobilisation of this powerful battery of responses against food antigens would be undesirable, partly because it would limit their uptake and metabolic usefulness, but more importantly hypersensitivity to foods can produce intestinal pathology, such as that seen in coeliac disease and other food sensitive enteropathies (FSE).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Elson C, Sartor, RB, Tennyson, GS, Riddell, RH. Experimental models of inflammatory bowel disease. Gastroenterology. 1995; 109: 1344–67

    Article  PubMed  CAS  Google Scholar 

  2. Mowat AMcI. The regulation of immune responses to dietary protein antigens. Immunology Today. 1987; 8: 93–8.

    Article  CAS  Google Scholar 

  3. Faria AMC, Weiner HL. Oral tolerance: mechanisms and therapeutic applications. Adv Immunol. 1999; 73: 153–264

    Article  PubMed  CAS  Google Scholar 

  4. Mowat AMcI, Weiner HL. 1999. Oral tolerance: basic mechanisms and clinical implications. In Mucosal Immunology, 2nd edition, eds. P. L. Ogra, J. Mestecky, M. E. Lamm, W. Strober, J. R. McGhee, J. Bienenstock, San Diego: Academic Press, 587–617

    Google Scholar 

  5. Strobel S, Ferguson A. Persistence of oral tolerance in mice fed ovalbumin is different for humoral and cell mediated immune responses. Immunology. 1987; 60: 317–8.

    PubMed  CAS  Google Scholar 

  6. Husby S, Mestecky J, Moldoveanu Z, Holland S, Elson CO. Oral tolerance in humans: T cell but not B cell tolerance after antigen feeding. Journal of Immunology. 1994; 152: 4663–4670.

    CAS  Google Scholar 

  7. Matsui M, Hafler DA, Weiner HL. Pilot study of oral tolerance to keyhole limpet hemocyanin in humans. Down regulation of KLH-reactive precursor-cell frequency. Ann NY Acad Sci. 1996; 778: 398–404

    Article  PubMed  CAS  Google Scholar 

  8. Suko M, Mori A, Ito K, Okudaira H. Oral immunotherapy may induce T cell anergy. Int Arch Allergy Immunol. 1995; 107: 278–81

    Article  PubMed  CAS  Google Scholar 

  9. Bagot M, Charue D, Flechet ML, et al. Oral desensitization in nickel allergy induces a decrease in nickel-specific T-cells. European Journal of Dermatology. 1995; 5: 614–617

    Google Scholar 

  10. Streilein JW. Immunologic privilege of the eye. Springer Semin Immunopathol. 1999; 21: 95–111.

    Article  PubMed  CAS  Google Scholar 

  11. Miller A, Al-Sabbagh A, Santos LMB, Das MP, Weiner HL. Epitopes of myelin basic protein that trigger TGF-b release after oral tolerization are distinct from encephalitogenic epitopes and mediate epitope-driven bystander suppression. J. Immunol. 1993; 151: 7307–7315

    PubMed  CAS  Google Scholar 

  12. Gregerson DS, Obritsch WF, Donoso LA. Oral tolerance in experimental autoimmune uveoretinitis: Distinct mechanisms of resistance are induced by low versus high dose feeding protocols. J. Immunol. 1993; 151: 5751–5761

    PubMed  CAS  Google Scholar 

  13. Al-Sabbagh A, Miller A, Santos LMB, Weiner HL. Antigen-driven tissue-specific suppression following oral tolerance: orally administered myelin basic protein suppresses proteolipid induced experimental autoimmune encephalomyelitis in the SJL mouse. Eur J Immunol. 1994; 24: 2104–2109

    Article  PubMed  CAS  Google Scholar 

  14. Khare SD, Krco CJ, Griffiths MM, Luthra HS, David CS. Oral administration of an immunodominant human collagen peptide modulates collagen-induced arthritis. J. Immunol. 1995; 155: 3653–3659

    PubMed  CAS  Google Scholar 

  15. Javed NH, Gienapp IE, Cox KL, Whitacre CC. Exquisite peptide specificity of oral tolerance in experimental autoimmune encephalomyelitis. J. Immunol. 1995; 155: 1599–1605

    PubMed  Google Scholar 

  16. Wildner G, Hünig, T. & Thurau, S.R. Orally induced, peptide-specific g/d TCR+ cells suppress experimental autoimmune uveitis. Eur J Immunol. 1996; 26: 2140–8

    Article  PubMed  CAS  Google Scholar 

  17. Hoyne GF, Callow MG, Kuo MC, Thomas WR. Inhibition of T-cell responses by feeding peptides containing major and cryptic eptopes: studies with the Der p I allergen. Immunology. 1994; 83: 190–195

    PubMed  CAS  Google Scholar 

  18. Thurau SR, Diedrichs-Mohring M, Fricke H, Burchardi C, Wildner G. Oral tolerance with an HLA-peptide mimicking retinal autoantigen as a treatment of autoimmune uveitis. Immunol Lett. 1999; 68: 205–12.

    Article  PubMed  CAS  Google Scholar 

  19. Elson CO, Ealding W. Generalised systemic and mucosal immunity in mice after mucosal stimulation with cholera toxin. J. Immunol. 1984; 132: 2736–2741

    PubMed  Google Scholar 

  20. Lycke N, Holmgren J. Strong adjuvant properties of cholera toxin on gut mucosal immune responses to orally presented antigens. Immunology. 1986; 59: 301–308

    PubMed  CAS  Google Scholar 

  21. Wilson AD, Stokes CR, Bourne FJ. Adjuvant effect of cholera toxin on the mucosal immune response to soluble proteins. Differences between mouse strains and protein antigens. Scand. J. Immunol. 1989; 29: 739–45.

    CAS  Google Scholar 

  22. Van der Heijden PJ, Bianchi ATJ, Dol M, et al. Manipulation of intestinal immune responses against ovalbumin by cholera toxin and its B subunit in mice. Immunology. 1991; 72: 89–93

    PubMed  Google Scholar 

  23. McGhee JR, Mestecky J, Dertzbaugh MT, et al. The mucosal immune system: from fundamental concepts to vaccine development. Vaccine. 1992; 10: 75–88.

    Article  PubMed  CAS  Google Scholar 

  24. GaboriauRouthiau V, Moreau M. Gut flora allows recovery of oral tolerance to ovalbumin in mice after transient breakdown mediated by cholera toxin or Escherichia coli heat-labile enterotoxin. Pediatric Research. 1996; 39: 625–629

    Article  CAS  Google Scholar 

  25. Heppell LM, Kilshaw Pi. Immune reponses in guinea pigs to dietary protein. I. Induction of tolerance by feeding ovalbumin. Int. Archs. Allergy Appl. Immunol. 1982; 68: 54–61

    Article  CAS  Google Scholar 

  26. Mowat AMcI, Strobel S, Drummond HE, Ferguson A. Immunological responses to fed protein antigens in mice. I. Reversal of oral tolerance to ovalbumin by cyclophosphamide. Immunology. 1982; 45: 104–113

    Google Scholar 

  27. Mowat AMcI, Thomas MJ, Mackenzie S, Parrott DMV. Divergent effects of bacterial lipopolysaccharide on immunity to orally administered protein and particulate antigens in mice. Immunology. 1986; 58: 677–84.

    PubMed  CAS  Google Scholar 

  28. Kay R, Ferguson A. The immunological consequences of feeding cholera toxin. I. Feeding cholera toxin suppresses the induction of systemic delayed-type hypersensitivity but not humoral immunity. Immunology. 1989; 66: 410–415

    PubMed  CAS  Google Scholar 

  29. Ke Y, Kapp JA. Oral antigen inhibits priming of CD8+ CTL, CD4+ T cells and antibody responses while activating CD8+ suppressor T cells. J. Immunol. 1996; 156: 916–21

    PubMed  Google Scholar 

  30. Weiner HL, Friedman A, Miller A, et al. Oral tolerance: immunologic mechanisms and treatment of animal and human organ-specific autoimmune diseases by oral administration of autoantigens. Ann Rev Immunol. 1994; 12: 809–38.

    Article  CAS  Google Scholar 

  31. Melamed D, Friedman A. In vivo tolerization of Thl lymphocytes following a single feed with ovalbumin: anergy in the absence of suppression. Eur. J. Immunol. 1994; 24: 1974–1981

    Article  PubMed  CAS  Google Scholar 

  32. Fishman-Lobell J, Friedman A, Weiner HL. Different kinetic patterns of cytokine gene expression in vivo in orally tolerant mice. Eur. J. Immunol. 1994; 24: 2720–2724

    Article  PubMed  CAS  Google Scholar 

  33. Melamed D, Fischmann-Lobell J, Uni Z, Weiner HL, Friedman A. Peripheral tolerance of Th2 lymphocytes induced by continuous feeding of ovalbumin. Int. Immunology.1996; 8:717–24.

    Article  CAS  Google Scholar 

  34. von Herrath MG, Dyrberg T, Oldstone MBA. Oral insulin treatment suppresses virus-induced antigen-specific destruction of b cells and prevents autoimmune diabetes in transgenic mice. J Clin Invest. 1996; 98: 1324–31.

    Article  Google Scholar 

  35. Claessen AME, Von Blomberg, B.M.E., De Groot, J., Wolvers, D.A.E., Kraal, G., Scheper,R.J. Reversal of mucosal tolerance by subcutaneous administration of interleukin-12 at the site of attaepted sensitization. Immunology. 1996; 88: 363–7.

    Article  PubMed  CAS  Google Scholar 

  36. Sudo N, Sawamura S, Tanaka K, et al. The requirement of intestinal bacterial flora for the development of an IgE production system fully susceptible to oral tolerance induction. J. Immunol. 1997; 159: 1739–45.

    PubMed  CAS  Google Scholar 

  37. Friedman A, Weiner HL. Induction of anergy or active suppression following oral tolerance is determined by antigen dosage. Proc. Natl. Acad. Sci. USA. 1994; 91: 6688–6692

    Article  PubMed  CAS  Google Scholar 

  38. Garside P, Steel M, Worthey EA, et al. Th2 cells are subject to high dose oral tolerance and are not essential for its induction. J. Immunol. 1995; 154: 564–955

    Google Scholar 

  39. Chen Y, Inobe J-I, Marks R, et al. Peripheral deletion of antigen-reactive T cells in oral tolerance. Nature. 1995; 376: 177–180.

    Article  PubMed  CAS  Google Scholar 

  40. Garside P, Steel M, Liew FY, Mowat AMcI. CD4+ but not CD8+ T cells are required for the induction of oral tolerance. Int. Immunol. 1995; 7: 501–4

    Article  PubMed  CAS  Google Scholar 

  41. Desvignes C, Bour H, Nicholas JF, Kaiserlian D. Lack of oral tolerance but oral priming for contact sensitivity to dinitrofluorobenzene in major histocompatibility antigen deficient mice and in CD4+ T cell-depleted mice. Eur. J. Immunol. 1996; 26: 1756–1761

    Article  PubMed  Google Scholar 

  42. Blanas E, Carbone FR, Allison J, Miller JFAP, Heath WR. Induction of autoimmune diabetes by oral administration of autoantigen. Science. 1996; 274: 1707–9.

    Article  PubMed  CAS  Google Scholar 

  43. Kim S-K, Reed DS, Olson S, et al. Generation of mucosal cytotoxic T cells against soluble protein by tissue-specific environmental and costimulatory signals. Proc. Natl. Acad. Sci. (USA). 1998; 95: 10814–9.

    Article  PubMed  CAS  Google Scholar 

  44. Blanas E, Carbone FR, Heath WR. A bone marrow-derived APC in the gut-associated lymphoid tissue captures oral antigens and presents them to both CD4+ and CD8+ T cells. J. Immunol. 2000;: In Press

    Google Scholar 

  45. Dahlgren UIH, Wold AE, Hanson LA, Midtvedt T. Expression of dietary protein in E. coli renders it strongly antigenic to gut lymphoid tissue. Immunology. 1991; 73: 394–397

    PubMed  CAS  Google Scholar 

  46. Stokes R, Newby TJ, Huntley JH, Patel D, Bourne FJ. The immune response of mice to bacterial antigens given by mouth. Immunology. 1979; 38: 497–502

    PubMed  CAS  Google Scholar 

  47. Titus RG, Chiller JM., Orally-induced tolerance. Definition at the cellular level. International Archives of Allergy and Applied Immunology. 1981; 65: 323–338

    Article  PubMed  CAS  Google Scholar 

  48. Maloy KJ, Donachie AM, O’Hagan DT, Mowat AMcI. Induction of mucosal and systemic immune responses by immunization with ovalbumin entrapped in poly(lactide-co-glycolide) microparticles. Immunology. 1994; 81: 661–667

    PubMed  CAS  Google Scholar 

  49. Owen RL. M cells--entryways of opportunity for enteropathogens. J Exp Med. 1994; 180: 7–9

    Article  PubMed  CAS  Google Scholar 

  50. Ermak T, Dougherty, EP, Bhagat, HR, Kabok, Z, Pappo, J. Uptake and transport of copolymer biodegradable microspheres by rabbit Peyer’s patch M cells. Cell Tissue Res. 1995; 279:433–6

    Article  PubMed  CAS  Google Scholar 

  51. Jones B, Pascopella L, Falkow S. Entry of microbes into the host: using M cells to break the mucosal barrier. Curr Opin Immunol. 1995; 7: 474–8

    Article  PubMed  CAS  Google Scholar 

  52. Michalek SM, Eldridge JH, Curtiss R, III., Rosenthal KL. 1994. Antigen delivery systems: new approaches to mucosal immunization. In Handbook of Mucosal Immunology, eds. P. L. Ogra, J. Mestecky, M. E. Lamm, W. Strober, J. R. McGhee, J. Bienenstock. San Diego, CA.: Academic Press, Inc., 373–390

    Google Scholar 

  53. Hirahara K, Hisatune T, Nishijima K-I, et al. CD4+ T cells anergized by high dose feeding establish oral tolerance to antibody responses when transferred in SCID and nude mice. J. Immunol. 1995; 154: 6238–6245

    PubMed  CAS  Google Scholar 

  54. Lundin BS, Dahlgren UI, Hanson LA, Telemo E. Oral tolerization leads to active suppression and bystander tolerance in adult rats, while anergy dominates in young rats. Scand J Immunol. 1996; 43: 56–63

    Article  PubMed  CAS  Google Scholar 

  55. Lamont AG, Mowat AMcI, Parrott DMV. Priming of systemic and local delayed-type hypersensitivity responses by feeding low doses of ovalbumin to mice. Immunology. 1989; 66: 595–9.

    PubMed  CAS  Google Scholar 

  56. Meyer AL, Benson JM, Gienapp IE, Cox KL, Whitacre CC. Suppression of murine chronic relapsing autoimmune encephalomyelitis by the oral administration of myelin basic protein. J. Immunol. 1996; 157: 4230–4238

    PubMed  CAS  Google Scholar 

  57. Miller BG, Newby TJ, Stokes CR, Bourne FJ. Influence of diet on postweaning malabsorption and diarrhoea in the pig. Res. Vet. Sci. 1984; 36: 187–193

    CAS  Google Scholar 

  58. Jarrett EE. Perinatal influences on IgE responses. Lancet. 1984; ii: 797–799

    Article  Google Scholar 

  59. Kiyono H, McGhee JR, Wannemuehler MJ, Michalek SM. Lack of oral tolerance in C3H/HeJ mice. J Exp Med. 1982; 155: 605–10.

    Article  PubMed  CAS  Google Scholar 

  60. Michalek SM, Kiyono H, Wannemuehler MJ, Mosteller LM, McGhee JR. Lipopolysaccharide (LPS) regulation of the immune response: LPS influence on oral tolerance induction. J. Immunol. 1982; 128: 1992–1998

    PubMed  CAS  Google Scholar 

  61. Kitamura K, Kiyono H, Fujihashi K, et al. Contrasuppressor cells that breakoral tolerance are antigen-specific T cells distinct from T helper (L3T4+), Tsuppressor (Lyt2+) and B cells. J. Immunol. 1987; 139: 3251–3259

    PubMed  CAS  Google Scholar 

  62. Saklayen MG, Pesce AJ, Pollak VE, Michael JG. Induction of oral tolerance in mice unresponsive to bacterial lipopolysaccharide. Infect. Immun. 1983; 41: 1383–5

    CAS  Google Scholar 

  63. Duchmann R, Schmitt E, Knolle P, Meyer zum Büschenfelde KH, Neurath M. Tolerance towards resident intestinal flora in mice is abrogated in experimental colitis and restored by treatment with interleukin-10 or antibodies to interleukin-12. Eur. J. Immunol. 1996; 26: 934–8.

    Article  PubMed  CAS  Google Scholar 

  64. Elson C, Beagley K, Sharmanov A, et al. Hapten-induced model of murine inflammatory bowel disease: mucosa immune responses and protection by tolerance. J. Immunol. 1996; 157: 2174–85

    PubMed  CAS  Google Scholar 

  65. Poltorak A, He X, Smirnova I, et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science. 1998; 282: 2085–8

    Article  PubMed  CAS  Google Scholar 

  66. Kim JH, Ohsawa M. Oral tolerance to ovalbumin in mice as a model for detecting modulators of the immunologic tolerance to a specific antigen. Biol Pharm Bull.1995; 18: 854–8.

    Article  PubMed  CAS  Google Scholar 

  67. Khoury SJ, Lider O, Al-Sabbagh A, Weiner HL. Suppression of experimental autoimmune encephalomyelitis by oral administration of myelin basic protein. III. Synergistic effect of lipopolysaccharide. Cell. Immunol. 1990; 131: 302–310

    CAS  Google Scholar 

  68. Khoury SJ, Hancock WW, Weiner HL. Oral tolerance to myelin basic protein and natural recovery from experimental autoimmune encephalomyelitis are associated with downregulation of inflammatory cytokines and differential upregulation of transforming growth factor b, interleukin 4, and prostaglandin E expression in the brain. J. Exp. Med. 1992; 176: 1355–1364

    CAS  Google Scholar 

  69. Moreau MC, Corthier G. Effect of the gastrointestinal microflora on induction and maintenance of oral tolerance to ovalbumin in C3H/HeJ mice. Infect. Immunol. 1988; 56: 2766–2768

    CAS  Google Scholar 

  70. Moreau M, GaboriauRouthiau V. The absence of gut flora, the doses of antigen ingested and ageing affect the long-term peripheral tolerance induced by ovalbumin feeding in mice. Res. Immunol. 1996; 147: 49–59

    Article  CAS  Google Scholar 

  71. Newberry RD, Stenson WP, Lorenz RG. Cyclooxygenase-2-dependent arachidonic acid metabolites are essential modulators of the intestinal immune response to dietary antigen. Nature Medicine. 1999; 5: 900–6.

    Article  PubMed  CAS  Google Scholar 

  72. Duchmann R, Kaiser I, Hermann E, et al. Tolerance exists towards resident intestinal flora but is broken in active inflammatory bowel disease (IBD). Clin. Exp. Immunol. 1995; 102: 448–455

    Article  PubMed  CAS  Google Scholar 

  73. Macpherson AJ, Maloy KJ, Bjarnason I. Intolerance of the dirty intestine. Gut. 1999; 44: 774–5

    Article  PubMed  CAS  Google Scholar 

  74. Karlsson MR, Kahu H, Hanson LA, Telemo E, Dahlgren UI. Neonatal colonization of rats induces immunological tolerance to bacterial antigens. Eur. J. Immunol. 1999; 29: 109–18

    Article  PubMed  CAS  Google Scholar 

  75. Hanson DG, Miller SD. Inhibition of specific immune responses by feeding protein antigens. V. Induction of the tolerant state in the absence of specific suppressor T cells. J. Immunol. 1982; 128: 2378–2381

    PubMed  CAS  Google Scholar 

  76. Tomasi TB, Barr WG, Challacombe SJ, Curran G. Oral tolerance and accessory cell function of Peyer’s patches. Ann NY Acad Sci. 1983; 409: 145–163.

    Article  PubMed  CAS  Google Scholar 

  77. Whitacre CC, Gienapp IE, Orosz CG, Bitar DM. Oral tolerance in experimental autoimmune encephalitis. III. Evidence for clonal anergy. J. Immunol. 1991; 147: 2155–2163

    PubMed  CAS  Google Scholar 

  78. Melamed D, Friedman A. Direct evidence for anergy in T lymphocytes tolerized by oral administration of ovalbumin. Eur. J. Immunol. 1993; 23: 935–42

    Article  PubMed  CAS  Google Scholar 

  79. Inada S, Yoshino S, Hague MA, Ogata Y, Kohashi O. Clonal anergy is a potent mechanism of oral tolerance in the suppression of acute antigen-induced arthritis in rats by oral administration of the inducing antigen. Cell. Immunol. 1996; 175: 67–75.

    Google Scholar 

  80. Marth T, Strober W, Kelsall BL. High dose oral tolerance in ovalbumin TCR-transgenic mice: systemic neutralisation of interleukin 12 augments TGF(3 secretion and T cell apoptosis. J. Immunol. 1996; 157: 2348–57

    PubMed  CAS  Google Scholar 

  81. Chen Y, Inobe J-I, Kuchroo VK, et al. Oral tolerance in myelin basic protein T-cell receptor transgenic mice: suppression of autoimmune encephalomyelitis and dose-dependent induction of regulatory cells. Proc. Natl. Acad. Sci. (USA). 1996; 93: 388–91.

    Article  PubMed  CAS  Google Scholar 

  82. Migita K, Ochi A. Induction of clonal anergy by oral administration of staphylococcal enterotoxin B. Eur. J. Immunol. 1994; 24: 2081–2086

    Article  PubMed  CAS  Google Scholar 

  83. Garside P, Steel M, Worthey EA, et al. Oral tolerance in mice is associated with increased susceptibility of challenged lymphocytes to undergo apoptosis in vivo. Am J Path. 1996; 149: 1971–80.

    PubMed  CAS  Google Scholar 

  84. Kearney ER, Pape KA, Loh DY, Jenkins MK. Visualization of peptide-specific T cell immunity and peripheral tolerance induction in vivo. Immunity. 1994; 1: 327–339

    Article  PubMed  CAS  Google Scholar 

  85. Sun J, Dirden-Kramer B, Ito K, Ernst PB, Van Houten N.,Antigen-specific T cell activation and proliferation during oral tolerance induction. J. Immunol. 1999; 162: 5865–75.

    Google Scholar 

  86. Van Houten N, Blake SF. Direct measurement of anergy of antigen-specific T cells following oral tolerance induction. J. Immunol. 1996; 157: 1337–41

    PubMed  Google Scholar 

  87. Chen Y, Inobe J-I, Weiner HL. Inductive events in oral tolerance in the TCR transgenic adoptive transfer model. Cell Immunol. 1997; 178: 62–8.

    Article  PubMed  CAS  Google Scholar 

  88. Williamson E, O’Malley JM, Viney JL. Defining the role of dendritic cells in oral tolerance induction by visualizing the T cell response elicited by oral administration of soluble protein antigen. Immunology. 1999; 97: 565–72.

    Article  PubMed  CAS  Google Scholar 

  89. Gütgemann I, Fahrer AM, Davis MM, Chien Y-H. Induction of rapid T cell activation and tolerance by systemic presentation of an orally administered antigen. Immunity. 1998; 8: 667–73.

    Article  PubMed  Google Scholar 

  90. Neumann B, Luz A, Pfeffer K, Holzmann B. Defective Peyer’s patch organogenesis in mice lacking the 55-kD receptor for tumor necrosis factor. J. Exp. Med. 1996; 184: 259–64.

    Article  PubMed  CAS  Google Scholar 

  91. Pape KA, Kearney ER, Khoruts A, et al. Use of adoptive transfer of T-cellantigen-receptor-transgenic T cells for the study of T-cell activation in vivo. Immunol Rev. 1997; 156: 67–78.

    Article  PubMed  CAS  Google Scholar 

  92. Perez VL, Parijs Lv, Biuckians A, et al. Induction of peripheral T cell tolerance in vivo requires CTLA-4 engagement. Immunity. 1997; 6: 411–7.

    Article  PubMed  CAS  Google Scholar 

  93. Mosmann TR, Sad S. The expanding universe of T-cell subsets: Thl, Th2, and more. Immunology Today. 1996; 17: 138–146

    Article  PubMed  CAS  Google Scholar 

  94. Grdic D, Hornquist E, Kjerrulf M, Lycke N. Lack of local suppression in orally tolerant CD8-deficient mice reveals a critical regulatory role of CD8+ T cells in the normal gut mucosa. J Immunol. 1998; 160: 754–62

    PubMed  CAS  Google Scholar 

  95. Vistica BP, Chanaud, N.P., Felix, N., Caspi, R.R., Rizzo, I.V., Nussenblatt, R.B., Gery, I. CD8 T-cells are not essential for the induction of “low dose” oral tolerance. Clin Immunol Immunopathol. 1996; 78: 196–202

    Article  PubMed  CAS  Google Scholar 

  96. Chen Y, Inobe J-I, Weiner HL. Induction of oral tolerance to myelin basic protein in CD8-depleted mice: Both CD4+ and CD8+ cells mediate active suppression. J. Immunol. 1995; 155: 910–916

    PubMed  CAS  Google Scholar 

  97. Barone KS, Jain SL, Michael JG. Effect of in vivo depletion of CD4+ and CD8+ cells on the induction and maintenance of oral tolerance. Cell. Immunol. 1995; 163: 19–29

    Article  PubMed  CAS  Google Scholar 

  98. McMenamin C, Pimm C, McKersey M, Holt PG. Regulation of IgE responses to inhaled antigen in mice by antigen-specific yδ T cells. Science. 1994; 265: 1869–71.

    Article  PubMed  CAS  Google Scholar 

  99. McMenamin C, McKersey M, Kuhnlein P, Hunig T, Holt PG. yδ T cells down-regulate primary IgE responses in rats to inhaled soluble protein antigens. J. Immunol. 1995; 154: 4390–4394

    PubMed  CAS  Google Scholar 

  100. McMenamin C, Oliver J, Girn BJ, et al. Regulation of T-cell sensitization at epithelial surfaces in the respiratory tract: Suppression of IgE responses to inhaled antigens by CD3+TCRcC /ß“ lymphocytes (putative y/6 T cells). Immunology. 1991; 74: 234–239

    PubMed  CAS  Google Scholar 

  101. Harrison LC, Dempsey-Collier,M., Kramer, D.R., Takahashi,K. Aerosol insulin induces regulatory CD8 76 T cells that prevent murine insulin-dependent diabetes. J Exp Med. 1996; 184:2167–74.

    Article  PubMed  CAS  Google Scholar 

  102. Seymour BWP, Gershwin LJ, Coffman RL. Aerosol-induced immunoglobulin (Ig)-E unresponsiveness to ovalbumin does not require CD8+ or T cell receptor (TCR)- y/6+ T cells or interferon (IFN)-y in a murine model of allergen sensitization. J Exp Med. 1998; 187: 721–31

    Article  PubMed  CAS  Google Scholar 

  103. Mengel J, Cardillo F, Aroeira LS, et al. Anti-gammadelta T cell antibody blocks the induction and maintenance of oral tolerance to ovalbumin in mice. Immunology Letters. 1995; 48: 97–102

    Article  PubMed  CAS  Google Scholar 

  104. Ke Y, Pearce K, Lake JP, Ziegler HK, Kapp JA. yδ T lymphocytes regulate the induction of oral tolerance. J. Immunol. 1997; 158: 3610–8.

    PubMed  CAS  Google Scholar 

  105. Fujihashi K, McGhee JR, Kweon M-N, et al. y/6 T cell-deficient mice have impaired mucosal immunoglobulin A responses. J Exp Med. 1996; 183: 1929–35.

    Article  PubMed  CAS  Google Scholar 

  106. Chen Y, Kuchroo VK, Inobe J-I, Hafler DA, Weiner I-L. Regulatory T cell clones induced by oral tolerance: suppression of autoimmune encephalomyelitis. Science. 1994; 265: 1237–40.

    Article  PubMed  CAS  Google Scholar 

  107. Neurath MF, Fuss I, Kelsall BL, et al. Experimental granulomatous colitis in mice is abrogated by induction of TGF-ß-mediated oral tolerance. J Exp Med. 1996; 183: 2605–16.

    Article  PubMed  CAS  Google Scholar 

  108. Gonnella PA, Chen Y, Inobe J-I, et al. In situ immune response in gut-associated lymphoid tissue (GALT) following oral antigen in TCR-transgenic mice. J. Immunol. 1998; 160: 4708–18.

    PubMed  CAS  Google Scholar 

  109. Yoshino S. Treatment with anti-IL4 monoclonal antibody blocks suppression of collagen-induced arthritis in mice by oral administration of type II collagen. J. Immunol. 1998; 160: 3067–71.

    PubMed  CAS  Google Scholar 

  110. Yoshino S, Yoshino J. Effect of a monoclonal antibody against interleukin-4 on suppression of antigen-induced arthritis in mice by oral administration of the inducing antigen. Cell. Immunol. 1998; 187: 139–44.

    Article  PubMed  CAS  Google Scholar 

  111. Wolvers DAW, van der Cammen MJF, Kraal G. Mucosal tolerance is associated with, but independent of, upregulation of Th2 responses. Immunology. 1997; 92: 328–33.

    Article  PubMed  CAS  Google Scholar 

  112. Shi HN, Grusby MJ, Nagler-Anderson C. Orally induced peripheral nonresponsiveness is maintained in the absence of functional Thl or Th2 cells. J Immunol. 1999; 162: 5143–8.

    PubMed  CAS  Google Scholar 

  113. Rizzo LV, Morawetz RA, Miller-Rivero NE, et al. IL-4 and IL-10 are both required for the induction of oral tolerance. J. Immunol. 1999; 162: 2163–22.

    Google Scholar 

  114. Fukaura H, Kent SC, Pietrusewicz ML, et al. Induction of circulating myelin basic protein and proteolipid protein-specific transforming growth factor-ß1secreting Th3 cells by oral administration of myelin in multiple sclerosis. J Clin Invest. 1996; 98: 70–7.

    Article  PubMed  CAS  Google Scholar 

  115. Groux H, Powrie F. Regulatory T cells in inflammatory bowel disease. Immunology Today. 1999; 20: 442–6.

    Article  PubMed  CAS  Google Scholar 

  116. Groux H, O’Garra A, Bigler M, et al. A CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature. 1997; 389: 737–42.

    Article  PubMed  CAS  Google Scholar 

  117. Kuhn R, Lohler J, Rennick D, Rajewsky K, Muller W. Interleukin-l0deficient mice develop chronic enterocolitis. Cell. 1993; 75: 263–279

    Article  PubMed  CAS  Google Scholar 

  118. Asseman C, Mauze S, Leach MW, Coffman RL, Powrie F. An essential role for interleukin 10 in the function of regulatory T cells that inhibit intestinal inflammation. J Exp Med. 1999; 190: 995–1004

    Article  PubMed  CAS  Google Scholar 

  119. Aroeira LS, Cardillo F, De-Albuquerque D, Vaz NM, Mengel J. Anti-IL-10 treatment does not block either the induction or the maintenance of orally induced tolerance to OVA. Scand. J. Immunol. 1995; 44: 319–323

    Google Scholar 

  120. Weiner HL. Oral tolerance: immune mechanisms and treatment of autoimmune diseases. Immunology Today. 1997; 18: 335–343

    Article  PubMed  CAS  Google Scholar 

  121. Lundin BS, Karlsson MR, Svensson LA, et al. Active suppression in orally tolerized rats coincides with in situ transforming growth factor-ß (TGF-ß) expression in the draining lymph nodes. Clin Exp Immunol. 1999; 116: 181–7

    Article  PubMed  CAS  Google Scholar 

  122. Miller A, Lider O, Roberts AB, Sporn MB, Weiner HL. Suppressor T cells generated by oral tolerization to myelin basic protein suppress both in vitro and in vivo immune responses by the release of transforming growth factor-13 after antigen-specific triggering. PNAS. 1992; 89: 421–425

    Article  PubMed  CAS  Google Scholar 

  123. Haneda K, Sano K, Tamura G, et al. TGF-ß induced by oral tolerance ameliorates experimental tracheal eosinophilia. J. Immunol. 1997; 159: 448–490.

    Google Scholar 

  124. Inobe J-I, Slavin AJ, Komagata Y, et al. IL-4 is a differentiation factor for transforming growth factor-b secreting Th3 cells and oral administration of IL-4 enhances oral tolerance in experimental allergic encephalomyelitis. Eur. J. Immunol. 1998; 28: 2780–90.

    Article  PubMed  CAS  Google Scholar 

  125. Barone KS, Tolarova DD, Ormsby I, Doetschman T, Michael JG. Induction of oral tolerance in TGF-(31 null mice. J. Immunol. 1998; 161: 154–60.

    PubMed  CAS  Google Scholar 

  126. Gautam SC, Chikkala NF, Battisto JR. Oral administration of the contact sensitizer trinitrochlorobenzene: initial sensitization and subsequent appearance of a suppressor population. Cell. Immunol. 1990; 125: 437–448

    CAS  Google Scholar 

  127. Hoyne GF, Thomas WR. T-cell responses to orally administered antigens. Study of the kinetics of lymphokine production after single and multiple feeding. Immunology. 1995; 84: 304–309.

    PubMed  Google Scholar 

  128. Hoyne GF, Callow MG, Kuhlman J, Thomas WR. T-cell lymphokine response to orally administered proteins during priming and unresponsiveness. Immunology. 1993; 78: 534–40

    PubMed  CAS  Google Scholar 

  129. Mowat AMcI, Steel M, Leishman AJ, Garside P. Normal induction of oral tolerance in the absence of a functional IL12 dependent g interferon signalling pathway. J. Immunol. 1999; 1: 4728–36

    Google Scholar 

  130. Mueller DL, Jenkins MK, Schwartz RH. Clonal expansion versus functional clonal inactivation: a costimulatory signalling pathway determines the outcome of T cell antigen receptor occupancy. Ann Rev Immunol. 1989; 7: 445–480

    Article  CAS  Google Scholar 

  131. Baschieri S, Lees RK, Lussow AR, MacDonald HR. Clonal anergy to staphylococcal enterotoxin B in vivo: selective effects on T cell subsets and lymphokines. Eur. J. Immunol. 1993; 23: 2661–2666

    Article  PubMed  CAS  Google Scholar 

  132. Kjerrulf M, Grdic D, Ekman L, et al. Interferon-y-receptor-deficient mice exhibit impaired gut mucosal immune responses but intact oral tolerance. Immunology. 1997; 92: 60–8

    Article  PubMed  CAS  Google Scholar 

  133. Grdic D, Smith RE, Donachie AM, et al. The mucosal adjuvant effect of cholera toxin and ISCOMS differ in their requirement for IL-12, indicating different pathways of action. Eur J Immunol. 1999; 29: 1774–84.

    Article  PubMed  CAS  Google Scholar 

  134. Kweon M-N, Fujihashi K, VanCott JL, et al. Lack of orally induced systemic unresponsiveness in IFN-g knockout mice. J Immunol. 1998; 160: 1687–93

    PubMed  CAS  Google Scholar 

  135. Lee HO, Miller SD, Hurst SD, Tan LJ, Cooper CJ, Barrett TA. Interferon gamma induction during oral tolerance reduces T-cell migration to sites of inflammation. Gastroenterology 2000;119:129–38.

    Article  PubMed  CAS  Google Scholar 

  136. Zhang Z, Michael JG. Orally inducible immune unresponsiveness is abrogated by IFNg treatment. J. Immunol. 1990; 144: 4163–4165

    PubMed  CAS  Google Scholar 

  137. Boyaka P, Marinaro M, Jackson RJ, et al. IL-12 is an effective adjuvant for induction of mucosal immunity. J Immunol. 1999; 162: 122–8.

    PubMed  CAS  Google Scholar 

  138. Karpus WJ, Kennedy KJ, Kunkel SL, Lukacs NW. Monocyte chemotactic protein 1 regulates oral tolerance induction by inhibition of T helper cell 1-related cytokines. J Exp Med. 1998; 187: 733–41.

    Article  PubMed  CAS  Google Scholar 

  139. Yoshino S, Quattrocchi E, Weiner HL. Oral administration of type II collagen suppresses antigen-induced arthritis in Lewis rats. Arthritis & Rheumatism. 1995; 38: 1092–1096

    Article  CAS  Google Scholar 

  140. Zhang JZ, Lee CSY, Lider O, Weiner HL. Suppression of adjuvant arthritis in Lewis rats by oral administration of type II collagen. J. Immunol. 1990; 145: 2489–2493

    PubMed  CAS  Google Scholar 

  141. Lanzavecchia A. Licence to kill. Nature. 1998; 393: 413–4.

    Article  PubMed  CAS  Google Scholar 

  142. Waldmann H, Cobbold S. How do monoclonal antibodies induce tolerance? A role for infectious tolerance? Ann Rev Immunol. 1998; 16: 619–44.

    Article  CAS  Google Scholar 

  143. Wise MP, Bemelman F, Cobbold SP, Waldmann H. Linked suppression of skin graft rejection can operate through indirect recognition. J. Immunol. 1998; 161: 5813–6

    PubMed  CAS  Google Scholar 

  144. Thornton AM, Shevach EM. Suppressor effector function of CD4+CD25+ immunoregulatory T cells is antigen nonspecific. J. Immunol. 2000; 164: 183–90.

    PubMed  CAS  Google Scholar 

  145. Thornton AM, Shevach EM. CD4+CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. J. Exp. Med. 1998; 188: 287–96

    Article  PubMed  CAS  Google Scholar 

  146. Lombardi G, Sidhu S, Batchelor R, Lechler R. Anergic T cells as suppressor cells in vitro. Science. 1994; 264: 1587–9

    Article  PubMed  CAS  Google Scholar 

  147. Taams LS, van Rensen AJML, Poeten MCM, et al. Anergic T cells actively suppress T cell responses via the antigen-presenting cell. Eur. J. Immunol. 1998; 28: 2902–12.

    Article  PubMed  CAS  Google Scholar 

  148. Homann D, Holz A, Bot A, et al. Autoreactive CD4+ T cells protect from autoimmune diabetes via bystander suppression using the IL-4/Stat 6 pathway. Immunity. 1999; 11: 463–72.

    Article  PubMed  CAS  Google Scholar 

  149. Read S, Mauze S, Asseman C, et al. CD38+CD45RB1o“’CD4+ T cells: a population of T cells with immune regulatory activities in vitro. Eur. J. Immunol. 1998; 28: 3435–47.

    Article  PubMed  CAS  Google Scholar 

  150. Hoyne GF, Le Roux I, Corsin-Jimenez M, et al. Serratel-induced Notch signalling regulates the decision between immunity and tolerance made by peripheral CD4(+) T cells. Int Immunol. 2000; 12: 177–185

    Article  PubMed  CAS  Google Scholar 

  151. Chai J-G, Bartok I, Chandler P, et al. Anergic T cells act as suppressor cells in vitro and in vivo. Eur. J. Immunol. 1999; 29: 686–92.

    Article  PubMed  CAS  Google Scholar 

  152. Banchereau J, Steinman RL. Dendritic cells and the control of immunity. Nature. 1998; 392: 245–52

    Article  PubMed  CAS  Google Scholar 

  153. Kopf M, Rued! C, Schmitz N, et al. OX40-deficient mice are defective in Th cell proliferation but are competent in generating B cell and CTL Responses after virus infection. Immunity. 1999; 11: 699–708

    Article  PubMed  CAS  Google Scholar 

  154. Evavold BD, Allen PM. Separation of IL-4 production from Th cell proliferation by an altered T cell receptor ligand. Science. 1991; 252: 1308–1310

    Article  PubMed  CAS  Google Scholar 

  155. Sloan-Lancaster J, Allen PM. Altered peptide ligand-induced partial T cell activation: molecular mechanisms and role in T cell biology. Ann Rev Immunol. 1996; 14: 1–27

    Article  CAS  Google Scholar 

  156. Buer J, Lanoue A, Franzke A, et al. Interleukin 10 secretion and impaired effector function of major histocompatibility complex class II-restricted T cells anergized in vivo. J. Exp. Med. 1998; 187: 177–183

    Article  PubMed  CAS  Google Scholar 

  157. Cauley LS, Cauley KA, Shub F, Huston G, Swain SL. Transferable anergy: superantigen treatment induces CD4+ T cell tolerance that is reversible and requires CD4–CD8- cells and interferon-y. J. Exp. Med. 1997; 186: 71–81.

    Article  PubMed  CAS  Google Scholar 

  158. Takahashi T, Kuniyasu Y, Toda M, et al. Immunologic self-tolerance maintained by CD25+CD4+ naturally anergic and suppressive T cells: induction of autoimmune disease by breaking their anergic/suppressive state. Int. Immunol. 1998; 10: 1969–80.

    Article  PubMed  CAS  Google Scholar 

  159. Chen W, Jin W, Wahl SM. Engagement of cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) induces transforming growth factor-(3 (TGF-ß) production by murine CD4+ T cells. J. Exp. Med. 1998; 188: 1849–57.

    Article  PubMed  CAS  Google Scholar 

  160. Dahlman-Hoglund A, Ahlstedt S, Hanson LA, Dahlgren U, Telemo E. Different expression of IL-2 receptor alpha-chain on a lamina propria T cell population and goblet cells in rats orally tolerized or sensitized to ovalbumin (OA) after colonization with an OA-producing Escherichia coli. Clin Exp Immunol. 1996; 106: 534–40

    Article  PubMed  CAS  Google Scholar 

  161. Hanson DG, Vaz NM, Rawlings LA, Lynch JM. Inhibition of specific immune responses by feeding protein Ag’s II. Effects of prior passive and active immunisation. J. Immunol. 1979; 122: 2261–2266

    PubMed  CAS  Google Scholar 

  162. Strobel S, Mowat AMcI, Drummond HE, Pickering MG, Ferguson A. Immunological responses to fed protein antigens in mice. 2. Oral tolerance for CMI is due to activation of cyclophosphamide sensitive cells by gut processed antigen. Immunology. 1983; 49: 451–6.

    PubMed  CAS  Google Scholar 

  163. Bruce MG, Ferguson A. Oral tolerance to ovalbumin in mice: Studies of chemically modified and of “biologically filtered” antigen. Immunology. 1986; 57: 627–630

    PubMed  CAS  Google Scholar 

  164. Bruce MG, Ferguson A. The influence of intestinal processing on the immunogenicity and molecular size of absorbed, circulating ovalbumin in mice. Immunology. 1986; 59: 295–300

    PubMed  CAS  Google Scholar 

  165. Kay R, A. F. The immunological consequences of feeding cholera toxin. II. Mechanisms responsible for the induction of oral tolerance for DTH. Immunology. 1989; 66: 416–421.

    PubMed  CAS  Google Scholar 

  166. Peng H-J, Turner MW, Strobel S. The generation of a ’tolerogen’ after the ingestion of ovalbumin is time-dependent and unrelated to serum levels of immunoreactive antigen. Clin. Exp. Immunol. 1990; 81: 510–15

    CAS  Google Scholar 

  167. Furrie E, Turner MW., Strobel S. Partial characterization of a circulating tolerogenic moiety which, after a feed of ovalbumin, suppresses delayed-type hypersensitivity in recipient mice. Immunology. 1995; 86: 480–6.

    PubMed  CAS  Google Scholar 

  168. Karlsson M, Kahu K, Hanson LA, Dahlgren U, Telemo E. 70,000g pellet from serum transfer tolerance: role of major histocompatibility complex class II. Immunol Letters. 1999; 69: 87(A)

    Google Scholar 

  169. Zitvogel L, Regnault A, Lozier A, et al. Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell-derived exosomes. Nat Med. 1998; 4: 594–600

    Article  PubMed  CAS  Google Scholar 

  170. Sanderson I, Ouellette, AJ, Carter, EA, Walker, WA, Harmatz, PR. Differential regulation of B7 mRNA in enterocytes and lymphoid cells. Immunology. 1993; 79: 434–8

    PubMed  CAS  Google Scholar 

  171. Bloom S, Simmons, D, Jewell, DP. Adhesion molecules intercellular adhesion molecule-1 (ICAM-1), ICAM-3 and B7 are not expressed by epithelium in normal or inflamed colon. Clin Exp Immunol. 1995; 101

    Google Scholar 

  172. Dippold W, Wittig, B, Schwaeble, W, Mayet, W, Meyer zum Buschenfelde, KH. Expression of intercellular adhesion molecule 1 (ICAM-1, CD54) in colonic epithelial cells. Gut. 1993; 34: 1593–7.

    Article  PubMed  CAS  Google Scholar 

  173. Furrie E, Turner MW, Strobel S. Failure of scid mice to generate an oral tolerogen after a feed of ovalbumin: a role for a functioning gut-associated lymphoid system. Immunology. 1994; 83: 562–7.

    PubMed  CAS  Google Scholar 

  174. Stokes CR, Newby TJ, Bourne FJ. The influence of oral immunization on local and systemic immune responses to heterologous antigens. Clin. Exp. Immunol. 1983; 52: 399–406

    CAS  Google Scholar 

  175. Mowat AMcI, Parrott DMV. Immunological responses to fed protein antigens in mice. IV. Effects of stimulating the reticuloendothelial system on oral tolerance and intestinal immunity to ovalbumin. Immunology. 1983; 50: 547–554.

    PubMed  CAS  Google Scholar 

  176. Strobel C, Mowat AMcI, Ferguson A. Prevention of oral tolerance induction to ovalbumin and enhanced antigen presentation during a graft-versus-host reaction in mice. Immunology. 1985; 56: 57–64

    PubMed  CAS  Google Scholar 

  177. Strobel S, Ferguson A. Modulation of intestinal and systemic immune responses to a fed protein. Gut. 1986; 27: 829–37

    Article  PubMed  CAS  Google Scholar 

  178. Hershberg RM, Mayer LM. Antigen processing and presentation by intestinal epithelial cells - polarity and complexity. Immunology Today. 2000;In Press

    Google Scholar 

  179. Fuchs EJ, Matzinger P. B cells turn off virgin but not memory T cells. Science. 1992; 258: 1156

    Article  PubMed  CAS  Google Scholar 

  180. Buhlmann JE, Foy TM, Aruffo A, et al. In the absence of a CD40 signal, B cells are tolerogenic. Immunity. 1995; 2: 645–53.

    Article  PubMed  CAS  Google Scholar 

  181. Gilbert KM, Weigle WO. B cell presentation of a tolerogenic signal to Th clones. Cell. Immunol. 1992; 139: 58–71

    CAS  Google Scholar 

  182. Jenkins MK, Burrell E, Ashwell JD. Antigen presentation by resting B cells. Effectiveness at inducing T cell proliferation is determined by costimulatory signals, not T cell receptor occupancy. J. Immunol. 1990; 144: 1585–90

    PubMed  CAS  Google Scholar 

  183. D’Orazio TJ, Niederkorn JY. Splenic B cells are required for tolerogenic antigen presentation in the induction of anterior chamber-associated immune deviation (ACAID). Immunology. 1998; 95: 47–55

    Article  PubMed  Google Scholar 

  184. Yoshida H, Hachimura S, Hirahara K, et al. Induction of oral tolerance in splenocyte-reconstituted SCID mice. Clin Immunol Immunopathol. 1998; 87: 282–91.

    Article  PubMed  CAS  Google Scholar 

  185. Viney JL, Mowat AMcI, O’Malley JM, Williamson E, Fanger N. Expanding dendritic cells in vivo enhances the induction of oral tolerance. J Immunol. 1998; 160: 5815–25.

    PubMed  CAS  Google Scholar 

  186. Williamson E, Westrich GM, Viney JL. Modulating dendritic cells to optimize mucosal immunization protocols. J. Immunol. 1999; 163: 3668–75.

    PubMed  CAS  Google Scholar 

  187. Iwasaki A, Kelsall BL. Freshly isolated Peyer’s patch, but not spleen, dendritic cells produce interleukin 10 and induce the differentiation of T helper type 2 cells. J. Exp. Med. 1999; 190: 229–39

    Google Scholar 

  188. Stumbles PA, Thomas JA, Pimm CL, et al. Resting respiratory tract dendritic cells preferentially stimulate helper cell type 2 (Th2) responses and require obligatory cytokine signals for induction of Thl immunity. J. Exp. Med. 1998; 188: 2019–31.

    Article  PubMed  CAS  Google Scholar 

  189. Kalinski P, Hilkens CMU, Wierenga EA, Kapsenberg ML. T-cell priming by type-1 and type-2 polarized dendritic cells: the concept of a third signal. Immunology Today. 1999; 20

    Google Scholar 

  190. Huang M, Stolina M, Sharma S, et al. Non-small cell lung cancer cyclooxygenase-2-dependent regulation of cytokine balance in lymphocytes and macrophages: up-regulation of interleukin 10 and down-regulation of interleukin 12 production. Cancer Res. 1998; 58: 1208–16

    PubMed  CAS  Google Scholar 

  191. Schwartz RH. T cell clonal anergy. Curr Opinion in Immunology. 1997; 9: 351–7.

    Article  CAS  Google Scholar 

  192. Pape KA, Merica R, Mondino A, Khoruts A, Jenkins MK. Direct evidence that functionally impaired CD4+ T cells persist in vivo following induction of peripheral tolerance. J Immunol. 1998; 160: 4719–29.

    PubMed  CAS  Google Scholar 

  193. Strober W, Kelsall B, Fuss I, et al. Reciprocal IFN-y and TGF-ß responses regulate the occurrence of mucosal inflammation. Immunology Today. 1997; 18: 61–4.

    Article  PubMed  CAS  Google Scholar 

  194. Samoilova EB, Horton JL, Zhang H, et al. CTLA-4 is required for the induction of high dose oral tolerance. Int. Immunology. 1998; 10: 491–8.

    Article  CAS  Google Scholar 

  195. Oosterwegel MA, Greenwald RI, Mandelbrot DA, Lorsbach RB, Sharpe AH. CTLA-4 and T cell activation. Curr Opin Immunol. 1999; 11: 294–300.

    Article  PubMed  CAS  Google Scholar 

  196. Kuchroo VK, Das JA, Brown AM, et al. B7–1 and B7–2 costimulatory molecules activate differentially the Th1/Th2 developmental pathways: application to autoimmune disease therapy. Cell. 1995; 80: 707–718

    Article  PubMed  CAS  Google Scholar 

  197. Schweitzer AN, Borriello F, Wong RC, Abbas AK, Sharpe AH. Role of costimulators in T cell differentiation: studies using antigen-presenting cells lacking expression of CD80 or CD86. J. Immunol. 1997; 158: 2713–22.

    PubMed  CAS  Google Scholar 

  198. Kweon M-N, Fujihashi K, Wakatsuki Y, et al. Mucosally induced systemic T cell unresponsiveness to ovalbumin requires CD40 ligand - CD40 interactions. J. Immunol. 1999; 162: 1904–9.

    PubMed  CAS  Google Scholar 

  199. Liu L, MacPherson G. Antigen acquisition by dendritic cells: intestinal dendritic cells acquire antigen administered orally and can prime naive T cells in vivo. J. Exp. Med. 1993; 177: 1299–307

    Article  PubMed  CAS  Google Scholar 

  200. Liu L, MacPherson, GG. Rat intestinal dendritic cells: immunostimulatory potency and phenotypic characterization. Immunology. 1995; 85: 88–93

    PubMed  CAS  Google Scholar 

  201. MacPherson G, Jenkins, CD, Stein, MJ, Edwards, C. Endotoxin-mediated dendritic cell release from the intestine. Characterization of released dendritic cells and TNF dependence. J. Immunol. 1995; 154: 1317–22.

    PubMed  CAS  Google Scholar 

  202. Harper H, Cochrane, L, Williams, NA. The role of small intestinal antigen-presenting cells in the induction of T-cell reactivity to soluble protein antigens: association between aberrant presentation in the lamina propria and oral tolerance. Immunology. 1996; 89.: 449–56

    Article  PubMed  CAS  Google Scholar 

  203. Kelsall B, Strober W. Distinct populations of dendritic cells are present in the subepithelial dome and T cell regions of the murine Peyer’s patch. J Exp Med. 1996; 183: 237–47

    Article  PubMed  CAS  Google Scholar 

  204. Ruedl C, Hubele S. Maturation of Peyer’s patch dendritic cells in vitro upon stimulation via cytokines or CD40 triggering. Eur. J. Immunol. 1997; 27: 1325–30

    Article  PubMed  CAS  Google Scholar 

  205. Spahn TW, Koni PA, Marino MW, et al. A critical role for the gut-associated lymphatic tissue in the induction of oral tolerance. Immunol Letters. 1999; 69: 86

    Google Scholar 

  206. Wolvers DAW, Coenen-De Roo CJJ, Mebius RE, et al. Intranasally induced immunological tolerance is determined by characteristics of the draining lymph nodes: studies with OVA and human cartilage gp39. J. Immunol. 1999; 162: 1994–8.

    PubMed  CAS  Google Scholar 

  207. Mowat AMcI, Viney JL. The anatomical basis of mucosal immune responses. Immunol. Rev. 1997; 156: 145–66.

    CAS  Google Scholar 

  208. Mowat AMcI. 1999. Induction of peripheral tolerance by portal vein administration of antigen. In The Immunology of the Liver, ed. I. N. Crispe, 101–15. New York: John Wiley & Sons Inc.

    Google Scholar 

  209. Gorczynski RM, Chen Z, Zeng H, Fu XM. Specificity for in vivo graft prolongation in yS T cell receptor hybridomas derived from mice given portal vein donor-specific preimmunization and skin allografts. J. Immunol. 1997; 159: 3698–3706.

    PubMed  CAS  Google Scholar 

  210. Teng Y-T, Gorczynski RM, Hozumi N. Function of TGF-ß-mediated innocent bystander suppression associated with physiological self-tolerance in vivo. Cell. Immunol. 1998; 190: 51–60.

    CAS  Google Scholar 

  211. Yang R, Liu Q, Grosfeld JL, Pescovitz MD. Intestinal drainage through liver is a pre-requisite for oral tolerance induction. J Paediatr Surg. 1994; 29: 1145–8.

    Article  CAS  Google Scholar 

  212. Thomas HC, Ryan CJ, Benjamin IS, Blumgart LH, MacSween RNM. The immune system response in cirrhotic rats. The induction of tolerance to orally administered protein antigens. Gastroenterology. 1976; 71: 114–117

    PubMed  CAS  Google Scholar 

  213. Thomson AW, Drakes ML, Zahorchak AF, et al. Hepatic dendritic cells: immunobiology and role in liver transplantation. J Leukoc Biol. 1999; 66: 322–30

    PubMed  CAS  Google Scholar 

  214. Lafont S, Andre C, Andre F, Gillon J, Fargier MC. Abrogation by subsequent feeding of antibody response, including IgE in parenterally immunised mice. J. Exp. Med. 1982; 155: 1573–1578

    Article  PubMed  CAS  Google Scholar 

  215. Higgins PJ, Weiner H. Suppression of experimental autoimmune encephalomyelitis by oral administration of myelin basic protein and its fragments. J. Immunol. 1988; 140: 440–445

    PubMed  CAS  Google Scholar 

  216. Lider O, Santos LMB, Lee CSY, Higgins PJ, Weiner HL. Suppression of experimental autoimmune encephalomyelitis by oral administration of myelin basic protein. II. Suppression of disease and in vitro immune responses is mediated by antigen-specific CD8+ T lymphocytes. J. Immunol. 1989; 142: 748–52.

    PubMed  CAS  Google Scholar 

  217. Lamont AG, Bruce MG, Watret KC, Ferguson A. Suppression of an established DTH response to ovalbumin in mice by feeding antigen after immunization. Immunology. 1988; 64: 135–40.

    PubMed  CAS  Google Scholar 

  218. Peng HJ, Turner MW, Strobel S. The kinetics of oral hyposensitisation to a protein antigen are determined by immune status and the timing, dose and frequency of antigen administration. Immunology. 1989; 67: 425–30.

    PubMed  CAS  Google Scholar 

  219. Thompson HS, Staines NA. Could specific oral tolerance be a therapy for utoimmune disease? Immunology Today. 1990; 11: 396–399

    Article  PubMed  CAS  Google Scholar 

  220. Melamed D, Friedman A. Modification of the immune response by oral tolerance: antigen requirements and interaction with immunogenic stimuli. Cell Immunol. 1993; 146: 412–20.

    Article  PubMed  CAS  Google Scholar 

  221. Hirahara K, Saitom S., Serizawa N, et al. Oral administration of a dominant T-cell determinant peptide inhibits allergen-specific Th1 and Th2 cell responses in cryj2-primed mice. J Allergy Clin Immunol. 1998; 102: 961–7.

    Article  PubMed  CAS  Google Scholar 

  222. Leishman AJ, Garside P, Mowat AMcI. Intervention in established immune responses by induction of oral tolerance. Cell. Immunol. 1998; 183: 137–48.

    CAS  Google Scholar 

  223. Chung Y, Chang S-Y, Kang C-Y. Kinetic analysis of oral tolerance: memory lymphocytes are refractory to oral tolerance. J. Immunol. 1999; 163: 3692–8.

    PubMed  CAS  Google Scholar 

  224. Benson JM, Stuckman SS, Cox KL, et al. Oral administration of myelin basic protein is superior to myelin in suppressing established relapsing experimental autoimmune encephalomyelitis. J. Immunol. 1999; 162: 624754.

    Google Scholar 

  225. Sayegh MH, Zhang ZJ, Hancock WW, et al. Down-regulation of the immune response to histocompatibility antigen and prevention of sensitization by skin allografts by orally administered alloantigen. Transplantation. 1992; 53: 163–166

    Article  PubMed  CAS  Google Scholar 

  226. Sayegh MH, Khoury SJ, Hancock WH, Weiner HL, Carpenter CB. Induction of immunity and oral tolerance with polymorphic class II major histocompatibility complex allopeptides in the rat. Proc. Natl. Acad. Sci. (USA). 1992; 89: 7762–6.

    Article  CAS  Google Scholar 

  227. He YG, Mellon J, Niederkorn JY. The effect of oral immunization on corneal allograft survival. Transplantation. 1996; 61: 920–926

    Article  PubMed  CAS  Google Scholar 

  228. Nakao A, Kasai M, Kumano K, et al. High-dose oral tolerance prevents antigen-induced eosinophil recruitment into the mouse airways. Int. Immunol. 1998; 104: 387–94.

    Article  Google Scholar 

  229. Weiner HL, Mackin GA, Matsui M, et al. Double-blind pilot trial of tolerization with myelin antigens in multiple sclerosis. Science. 1993; 259: 1321–4.

    Article  PubMed  CAS  Google Scholar 

  230. Trentham DE, Dynesius-Trentham RA, Orav EJ, et al. Effects of oral administration of collagen on rheumatoid arthritis. Science. 1993; 261: 1727–1730

    Article  PubMed  CAS  Google Scholar 

  231. Sieper J, Kary S, Sörensen H, et al. Oral type II collagen treatment in early rheumatoid arthritis. A double blind, placebo-controlled, randomized trial. Arthritis and Rheumatism. 1996; 39: 41–51.

    Article  PubMed  CAS  Google Scholar 

  232. Trentham DE. Oral tolerization as a treatment of rheumatoid arthritis. Rheum Dis Clin North Am. 1998; 24: 525–36

    Article  PubMed  CAS  Google Scholar 

  233. Hauselmann HJ, Caravatti M, Seifert B, et al. Can collagen type II sustain a methotrexate-induced therapeutic effect in patients with long-standing rheumatoid arthritis? A double-blind, randomized trial. Br J Rheumatol. 1998; 37: 1110–7

    Article  PubMed  CAS  Google Scholar 

  234. McKown KM, Carbone LD, Kaplan SB, et al. Lack of efficacy of oral bovine type II collagen added to existing therapy in rheumatoid arthritis. Arthritis Rheum. 1999; 42: 1204–8

    Article  PubMed  CAS  Google Scholar 

  235. Barnett ML, Combitchi D, Trentham DE. A pilot trial of oral type II collagen in the treatment of juvenile rheumatoid arthritis. Arthritis & Rheumatism. 1996; 39: 623–628

    Article  CAS  Google Scholar 

  236. Barnett ML, Kremer JM, St Clair EW, et al. Treatment of rheumatoid arthritis with oral type II collagen. Results of a multicenter, double-blind, placebo-controlled trial. Arthritis Rheum. 1998; 41: 290–7

    Article  PubMed  CAS  Google Scholar 

  237. Nussenblatt RB, Gery I, Weiner HL, et al. Treatment of uveitis by oral administration of retinal antigens: Results of a phase I/II randomized masked trial. Am J Ophthalm. 1997; 123: 583–592

    CAS  Google Scholar 

  238. Ma S-W, Zhao D-L, Mukherjee R, et al. Transgenic plants expressing autoantigens fed to mice to induce oral tolerance. Nature Medicine. 1997; 3: 793–6.

    Article  PubMed  CAS  Google Scholar 

  239. Rizzo LV, Miller-Rivero NE, Chan C-C, et al. Interleukin-2 treatment potentiates induction of oral tolerance in a murine model of autoimmunity. J Clin Invest. 1994; 94: 1668–1672

    Article  PubMed  CAS  Google Scholar 

  240. Elson CO, Dertzbaugh MT. 1999. Mucosal Adjuvants. In Mucosa! Immunology,2nd Edition, eds. P. L. Ogra, J. Mestecky, M. E. Lamm, W. Strober, J. R. McGhee, J. Bienenstock. San Diego: Academic Press, 818–38.

    Google Scholar 

  241. McGhee JR, Czerkinsky C, Mestecky J. 1999. Mucosal vaccines: an overview. In Mucosa! immunology,2nd edition, eds. P. L. Ogra, J. Mestecky, M. E. Lamm, W. Strober, J. R. McGhee, J. Bienenstock. San Diego: Acadmeic Press, 741–57.

    Google Scholar 

  242. Sun JB, Holmgren J, Czerkinsky C. Cholera toxin B subunit: An efficient transmucosal carrier-delivery system for induction of peripheral immunological tolerance. Proc. Natl. Acad. Sci. (USA). 1994; 91: 10795–10799.

    Article  CAS  Google Scholar 

  243. Sun JB, Rask C, Olsson T, Holmgren J, Czerkinsky C. Treatment of experimental autoimmune encephalomyelitis by feeding myelin basic protein conjugated to cholera toxin B subunit. Proc. Natl. Acad. Sci. (USA). 1996; 93: 7196–7201

    Article  CAS  Google Scholar 

  244. Bergerot I, Fioix C, Peterson J, et al. A cholera toxoid-insulin conjugate as an oral vaccine against spontaneous autoimmune diabetes. Proc. Natl. Acad. Sci. (USA). 1997; 94: 4610–4614

    Article  CAS  Google Scholar 

  245. Czerkinsky C, Anjuere F, McGhee JR, et al. Mucosal immunity and tolerance: Relevance to vaccine development. Immunol. Rev. 1999; 170: 197–222

    CAS  Google Scholar 

  246. Williams NA, Hirst TR, Nashar TO. Immune modulation by the cholera-like enterotoxins: From adjuvant to therapeutic. Immunology Today. 1999; 20: 95–101

    Article  PubMed  CAS  Google Scholar 

  247. McSorley SJ, Rask C, Pichot R, et al. Selective tolerization of Th1-like cells after nasal administration of a cholera toxoid-LACK conjugate. Eur J Immunol. 1998; 28: 424–432.

    Article  PubMed  CAS  Google Scholar 

  248. Ploix C, Bergerot I, Durand A, et al. Oral administration of cholera toxin B-insulin conjugates protects NOD mice from autoimmune diabetes by inducing CD4+ regulatory T-cells. Diabetes. 1999; 48: 2150–6

    Article  PubMed  CAS  Google Scholar 

  249. Mowat AMcI, Ferguson A. Hypersensitivity in the small intestinal mucosa. V. Induction of cell mediated immunity to a dietary antigen. Clin Exp Immunol. 1981; 43: 574–82.

    PubMed  Google Scholar 

  250. Mowat AMcI. Depletion of suppressor T cells by 2’-deoxyguanosine abrogates tolerance in mice fed ovalbumin and permits the induction of intestinal delayed-type-hypersensitivity. Immunology. 1986; 58: 179–184

    PubMed  CAS  Google Scholar 

  251. Stokes CR, Miller BG, Bourne FJ. 1987. Animal models of food sensitivity. In Food Allergy and Intolerance, ed. J. Brostoff, Challacombe, S.J., 286–300. Eastbourne, UK: W.B. Saunders

    Google Scholar 

  252. Mowat AMcI. 1984. The immunopathogenesis of food sensitive enteropathies. In Local Immune Responses of the Gut., eds. T. J. Newby, C. R. Stokes, 199–225. Boca Raton: CRC Press

    Google Scholar 

  253. Ferguson A. 1987. Models of immunologically-driven small intestinal damage. In Immunopathology of the Small Intestine, ed. M. N. Marsh, 225–252. Chichester: John Wiley and Sons

    Google Scholar 

  254. Bhan AK, Mizoguchi E, Smith RN, Mizoguchi A. Colitis in transgenic and knockout animals as models of human inflammatory bowel disease. Immunol Rev. 1999; 169: 195–207

    Article  PubMed  CAS  Google Scholar 

  255. Powrie F, Carlino J, Leach MW, Mauze S, Coffman RL. A critical role for transforming growth factor-b but not interleukin 4 in the suppression of T helper type 1-mediated colitis by CD45RBlow CD4+ T cells. J exp Med. 1996; 183: 2669–74

    Article  PubMed  CAS  Google Scholar 

  256. Neurath MF, Fuss I, Kelsall BL, Stuber E, Strober W. Antibodies to IL-12 abrogate established experimental colitis in mice. J. Exp. Med. 1995; 182: 1281–1290.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Kluwer Academic Publishers

About this chapter

Cite this chapter

Mowat, A.M. (2001). Regulation of intestinal immune responses to local antigens: oral tolerance vs immunopathology. In: Mahida, Y.R. (eds) Immunological Aspects of Gastroenterology. Immunology and Medicine Series, vol 31. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0790-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0790-0_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3852-2

  • Online ISBN: 978-94-010-0790-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics