Rodent models of chronic intestinal inflammation

  • Y. R. Mahida
Part of the Immunology and Medicine Series book series (IMME, volume 31)

Abstract

Over the last 10 years, numerous rodent models of chronic intestinal inflammation have been described. These models provide important information regarding the mechanisms by which intestinal inflammation may be mediated in human chronic inflammatory diseases such as ulcerative colitis, Crohn’s disease and coeliac disease. Chronic intestinal inflammation in rodents may develop spontaneously, after parasite infection or following administration of exogenous/injurious agents, usually into the lumen.

Keywords

Arthritis Adenoma Polysaccharide Interferon Luminal 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sundberg JP, Elson CO, Bedigian H, Birkenmeier EH. Spontaneous, heritable colitis in a new substrain of C3H/HeJ mice. Gastroenterology 1994;107(6): 1726–35.PubMedGoogle Scholar
  2. 2.
    Elson CO, Sartor RB, Tennyson GS, Riddell RH. Experimental models of inflammatory bowel disease. Gastroenterology 1995;109(4):1344–67.PubMedGoogle Scholar
  3. 3.
    Brandwein SL, McCabe RP, Cong Y, Waites KB, Ridwan BU, Dean PA, et al. Spontaneously colitic C3H/HeJBir mice demonstrate selective antibody reactivity to antigens of the enteric bacterial flora. J Immunol 1997;159(1):44–52.PubMedGoogle Scholar
  4. 4.
    Cong Y, Brandwein SL, McCabe RP, Lazenby A, Birkenmeier EH, Sundberg JP, et al. CD4+ T cells reactive to enteric bacterial antigens in spontaneously colitic C3H/HeJBir mice: increased T helper cell type 1 response and ability to transfer disease. J Exp Med 1998;187(6):855–64.PubMedGoogle Scholar
  5. 5.
    Matsumoto S, Okabe Y, Setoyama H, Takayama K, Ohtsuka J, Funahashi H, et al. Inflammatory bowel disease-like enteritis and caecitis in a senescence accelerated mouse P1/Yit strain. Gut 1998;43(1):71–8.PubMedGoogle Scholar
  6. 6.
    Blumberg RS, Saubermann Li, Strober W. Animal models of mucosal inflammation and their relation to human inflammatory bowel disease. Curr Opin Immunol 1999;11(6):648–56.PubMedGoogle Scholar
  7. 7.
    Morris GP, Beck PL, Herridge MS, Depew WT, Szewczuk MR, Wallace JL. Hapten-induced model of chronic inflammation and ulceration in the rat colon. Gastroenterology 1989;96(3):795–803.PubMedGoogle Scholar
  8. 8.
    Cavani A, Hackett CJ, Wilson KJ, Rothbard JB, Katz SI. Characterization of epitopes recognized by hapten-specific CD4+ T cells. J Immunol 1995;154(3):1232–8.PubMedGoogle Scholar
  9. 9.
    Neurath MF, Fuss I, Kelsall BL, Stuber E, Strober W. Antibodies to interleukin 12 abrogate established experimental colitis in mice. J Exp Med 1995;182(5):1281–90.PubMedGoogle Scholar
  10. 10.
    Fuss IJ, Marth T, Neurath MF, Pearlstein GR, Jain A & Strober W. Antiinterleukin 12 treatment regulates apoptosis of Thl T cells in experimental colitis in mice. Gastroenterology 1999;117:1078–88.PubMedGoogle Scholar
  11. 11.
    Neurath MF, Fuss I, Kelsall BL, Presky DH, Waegell W, Strober W. Experimental granulomatous colitis in mice is abrogated by induction of TGF-beta-mediated oral tolerance. J Exp Med 1996;183(6):2605–16.PubMedGoogle Scholar
  12. 12.
    Neurath MF, Pettersson S, Meyer zum Buschenfelde KH, Strober W. Local administration of antisense phosphorothioate oligonucleotides to the p65 subunit of NF-kappa B abrogates established experimental colitis in mice. Nat Med 1996;2(9):998–1004.PubMedGoogle Scholar
  13. 13.
    Dohi T, Fujihashi K, Rennert PD, Iwatani K, Kiyono H, McGhee JR. Hapten-induced colitis is associated with colonic patch hypertrophy and T helper cell 2-type responses. J Exp Med 1999;189(8):1169–80.PubMedGoogle Scholar
  14. 14.
    Guler ML, Gorham JD, Hsieh CS, Mackey AJ, Steen RG, Dietrich WF, et al. Genetic susceptibility to Leishmania: IL-12 responsiveness in TH1 cell development. Science 1996;271(5251):984–7.PubMedGoogle Scholar
  15. 15.
    Gorham JD, Guler ML, Steen RG, Mackey Ai, Daly MJ, Frederick K, et al. Genetic mapping of a murine locus controlling development of T helper 1/T helper 2 type responses. Proc Natl Acad Sci U S A 1996;93(22):12467–72.PubMedGoogle Scholar
  16. 16.
    Duchmann R, Schmitt E, Knolle P, Buschenfelde K-HM & Neurath M. Tolerance towards resident intestinal flora in mice is abrogated in experimental colitis and restored by treatment with interleukin-10 or antibodies to interleukin-12. Eur J Immunol 1996;26:934–38.PubMedGoogle Scholar
  17. 17.
    Palmen MJ, Wijburg OL, Kunst IH, Kroes H, van Rees EP. CD4+ T cells from 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis rodents migrate to the recipient’s colon upon transfer; down-regulation by CD8+ T cells. Clin Exp Immunol 1998;112(2):216–25.PubMedGoogle Scholar
  18. 18.
    Wallace JL, Le T, Carter L, Appleyard CB, Beck PL. Hapten-induced chronic colitis in the rat: alternatives to trinitrobenzene sulfonic acid. J Pharmacol Toxicol Methods 1995;33(4):237–9.PubMedGoogle Scholar
  19. 19.
    Qiu BS, Valiance BA, Blennerhassett PA, Collins SM. The role of CD4+ lymphocytes in the susceptibility of mice to stress-induced reactivation of experimental colitis. Nat Med 1999;5(10):1178–82.PubMedGoogle Scholar
  20. 20.
    Boirivant M, Fuss IJ, Chu A, Strober W. Oxazolone colitis: A murine model of T helper cell type 2 colitis treatable with antibodies to interleukin 4. J Exp Med 1998;188(10):1929–39.PubMedGoogle Scholar
  21. 21.
    Okayasu I, Hatakeyama S, Yamada M, Ohkusa T, Inagaki Y, Nakaya R. A novel method in the induction of reliable experimental acute and chronic ulcerative colitis in mice. Gastroenterology 1990;98(3):694–702.PubMedGoogle Scholar
  22. 22.
    Cooper HS, Murthy SN, Shah RS, Sedergran DJ. Clinicopathologic study of dextran sulfate sodium experimental murine colitis. Lab Invest 1993;69(2):238–49.PubMedGoogle Scholar
  23. 23.
    Hoshi O, Iwanaga T, Fujino MA. Selective uptake of intraluminal dextran sulfate sodium and senna by macrophages in the cecal mucosa of the guinea pig. J Gastroenterol 1996;31(2):189–98.PubMedGoogle Scholar
  24. 24.
    Dieleman LA, Ridwan BU, Tennyson GS, Beagley KW, Bucy RP, Elson CO. Dextran sulfate sodium-induced colitis occurs in severe combined immunodeficient mice. Gastroenterology 1994;107(6):1643–52.PubMedGoogle Scholar
  25. 25.
    Ni J, Chen SF, Hollander D. Effects of dextran sulphate sodium on intestinal epithelial cells and intestinal lymphocytes. Gut 1996;39(2):234–41.PubMedGoogle Scholar
  26. 26.
    Tessner TG, Cohn SM, Schloemann S, Stenson WF. Prostaglandins prevent decreased epithelial cell proliferation associated with dextran sodium sulfate injury in mice. Gastroenterology 1998;115(4):874–82.PubMedGoogle Scholar
  27. 27.
    Axelsson LG, Landstrom E, Goldschmidt TJ, Gronberg A, Bylund-Fellenius AC. Dextran sulfate sodium (DSS) induced experimental colitis in immunodeficient mice: effects in CD4(+) -cell depleted, athymic and NKcell depleted SCID mice. Inflamm Res 1996;45(4):181–91.PubMedGoogle Scholar
  28. 28.
    Mahler M, Bristol IJ, Sundberg JP, Churchill GA, Birkenmeier EH, Elson CO, et al. Genetic analysis of susceptibility to dextran sulfate sodium-induced colitis in mice. Genomics 1999;55(2):147–56.PubMedGoogle Scholar
  29. 29.
    Mahler M, Bristol IJ, Leiter EH, Workman AE, Birkenmeier EH, Elson CO, et al. Differential susceptibility of inbred mouse strains to dextran sulfate sodium-induced colitis. Am J Physiol 1998;274(3 Pt 1):G544–51.PubMedGoogle Scholar
  30. 30.
    Shintani N, Nakajima T, Nakakubo H, Nagai H, Kagitani Y, Takizawa H, et al. Intravenous immunoglobulin (IVIG) treatment of experimental colitis induced by dextran sulfate sodium in rats. Clin Exp Immunol 1997;108(2):340–5.PubMedGoogle Scholar
  31. 31.
    Araki Y, Andoh A, Fujiyama Y, Bamba T. Development of dextran sulphate sodium-induced experimental colitis is suppressed in genetically mast cell-deficient Ws/Ws rats. Clin Exp Immunol 2000;119(2):264–269.PubMedGoogle Scholar
  32. 32.
    Ferguson A, and Jarrett EE. 1975. Hypersensitivity reactions in the small intestine. I. Thymus dependence of experimental “partial villous atrophy”. Gut. 16:114–117.PubMedGoogle Scholar
  33. 33.
    Garside P, Grencis RK, and Mowat A.McI. 1992. T lymphocyte dependent enteropathy in murine Trichinella spiralis infection. Parasite Immunol. 14:217–225.PubMedGoogle Scholar
  34. 34.
    Ishikawa N, Wakelin D, and Mahida YR. 1997. Role of T helper 2 cells in intestinal goblet cell hyperplasia in mice infected with Trichinella spiralis. Gastroenterology. 113:542–49.PubMedGoogle Scholar
  35. 35.
    Ishikawa N, Goyal PK, Mahida YR, Li K-F, and Wakelin DW. 1998. Early cytokine responses during intestinal parasite infections. Immunology. 93:257–263.PubMedGoogle Scholar
  36. 36.
    Pond L, Wassom DL & Hayes CE. Evidence for differential induction of helper T cell subsets during Trichinella spiralis infection. J Immunol. 1989;143:4232–7.PubMedGoogle Scholar
  37. 37.
    Urban JF, Katona IM, Paul WE & Finkelman FD. Interleukin 4 is important in protective immunity to a gastrointestinal nematode infection in mice. Proc Natl Acad Sci. 1989;88:5513–7.Google Scholar
  38. 38.
    Grencis RK, Hultner L & Else KJ. Host protective immunity to Trichinella spiralis in mice: activation of Th subsets and lymphokine secretion in mice expressing different response phenotypes. Immunology 1991;74:329–32.PubMedGoogle Scholar
  39. 39.
    Kopf M, leGros G, Bachmann M, Lamers MC, Bluethmann H & Kohler G. Disruption of the murine IL-4 gene blocks Th2 cytokine responses. Nature 1993;362:245–8.PubMedGoogle Scholar
  40. 40.
    Nawa Y, Ishikawa N, Tsuchiya K, Horii Y, Abe T, Khan AI, Bing S, Itoh H, Ide H, Uchiyama F. Selective effector mechanisms for the expulsion of intestinal helminths. Parasite Immunol 1994;16:333–338.PubMedGoogle Scholar
  41. 41.
    Ishikawa N, Horii Y, Nawa Y. Immun-mediated alteration of the terminal sugars of goblet cell mucins in the small intestine of Nippostrongylus brasiliensis-infected rats. Immunology 1993;78:303–307.PubMedGoogle Scholar
  42. 42.
    Kamal M, Wakelin D, Smith A, Ouellette A, Podolsky DK & Mahida YR. Paneth, intermediate and goblet cell hyperplasia in T. spiralis-infected mice is mediated by a unique population of T cells. Gastroenterology 2000;118:A358.Google Scholar
  43. 43.
    Sadlack B, Merz H, Schorle H, Schimpl A, Feller AC, Horak I. Ulcerative colitis-like disease in mice with a disrupted interleukin-2 gene. Cell 1993;75(2):253–61.PubMedGoogle Scholar
  44. 44.
    Ma A, Dana M,.Margosian E, Chen J, Horak, I. T cells, but not B cells, are required for bowel inflammation in interleukin 2-deficient mice. J Exp Med 1995;182: 1567–72.PubMedGoogle Scholar
  45. 45.
    Kramer S, Schimpl A, Hunig T. Immunopathology of interleukin (IL) 2-deficient mice: thymus dependence and suppression by thymus-dependent cells with an intact IL-2 gene. J Exp Med 1995;182(6):1769–76.PubMedGoogle Scholar
  46. 46.
    Ludviksson B R, Gray B, Strober W, Ehrhardt RO. Dysregulated intrathymic development in the IL-2-deficient mouse leads to colitis-inducing thymocytes J Immunol 1997;158:104–11.PubMedGoogle Scholar
  47. 47.
    Meijssen MA, Brandwein SL, Reinecker HC, Bhan AK, Podolsky DK. Alteration of gene expression by intestinal epithelial cells precedes colitis in interleukin-2-deficient mice. Am J Physiol 1998;274(3 Pt 1):G472–9.PubMedGoogle Scholar
  48. 48.
    Mombaerts P, Mizoguchi E, Grusby MJ, Glimcher LH, Bhan AK, Tonegawa S. Spontaneous development of inflammatory bowel disease in T cell receptor mutant mice. Cell 1993;75(2):274–82.PubMedGoogle Scholar
  49. 49.
    Dianda L, Hanby AM, Wright NA, Sebesteny A, Hayday AC, Owen MJ. T cell receptor-alpha beta-deficient mice fail to develop colitis in the absence of a microbial environment. Am J Pathol 1997;150(1):91–7.PubMedGoogle Scholar
  50. 50.
    Mizoguchi A, Mizoguchi E, Chiba C, Bhan AK. Role of appendix in the development of inflammatory bowel disease in TCR-alpha mutant mice. J Exp Med 1996;184(2):707–15.PubMedGoogle Scholar
  51. 51.
    Rutgeerts P, D’Haens G, Hiele M, Geboes K, Vantrappen G. Appendectomy protects against ulcerative colitis. Gastroenterology 1994;106(5):1251–3.PubMedGoogle Scholar
  52. 52.
    Smithson JE, Radford-Smith G, Jewell GP. Appendectomy and tonsillectomy in patients with inflammatory bowel disease. J Clin Gastroenterol 1995;21(4):283–6.PubMedGoogle Scholar
  53. 53.
    Duggan AE, Usmani I, Neal KR, Logan RF. Appendicectomy, childhood hygiene, Helicobacter pylori status, and risk of inflammatory bowel disease: a case control study. Gut 1998;43(4):494–8.PubMedGoogle Scholar
  54. 54.
    Duerr RH, Targan SR, Landers CJ, LaRusso NF, Lindsay KL, Wiesner RH, et al. Neutrophil cytoplasmic antibodies: a link between primary sclerosing cholangitis and ulcerative colitis. Gastroenterology 1991;100(5 Pt 1):1385–91.PubMedGoogle Scholar
  55. 55.
    Das KM, Dasgupta A, Mandal A & Geng X. Autoimmunity to cytoskeletal protein tropomyosin. A clue to the pathogenetic mechanism for ulcerative colitis. J Immunol 1993;150(6):2487–93.PubMedGoogle Scholar
  56. 56.
    Mizoguchi A, Mizoguchi E, Smith RN, Preffer FI, Bhan AK. Suppressive role of B cells in chronic colitis of T cell receptor alpha mutant mice. J Exp Med 1997;186(10):1749–56.PubMedGoogle Scholar
  57. 57.
    Takahashi I, Kiyono H, Hamada S. CD4+ T-cell population mediates development of inflammatory bowel disease in T-cell receptor alpha chain-deficient mice. Gastroenterology 1997;112(6):1876–86.PubMedGoogle Scholar
  58. 58.
    Mizoguchi A, Mizoguchi E, Bhan AK. The critical role of interleukin 4 but not interferon gamma in the pathogenesis of colitis in T-cell receptor alpha mutant mice. Gastroenterology 1999;116(2):320–6.PubMedGoogle Scholar
  59. 59.
    lijima H, Takahashi I, Kishi D, Kim JK, Kawano S, Hori M, et al. Alteration of interleukin 4 production results in the inhibition of T helper type 2 cell-dominated inflammatory bowel disease in T cell receptor alpha chain-deficient mice. J Exp Med 1999;190(5):607–15.Google Scholar
  60. 60.
    Takahashi I, Iijima H, Katashima R, Itakura M, Kiyono H. Clonal expansion of CD4+ TCRbetabeta+ T cells in TCR alpha-chain-deficient mice by gut-derived antigens. J Immunol 1999;162(3):1843–50.PubMedGoogle Scholar
  61. 61.
    Bogdan C, Paik J, Vodovotz Y, Nathan C. Contrasting mechanisms for suppression of macrophage cytokine release by transforming growth factor-beta and interleukin-10. J Biol Chem 1992;267(32):23301–8.PubMedGoogle Scholar
  62. 62.
    Kuhn R, Lohler J, Rennick D, Rajewsky K, Muller W. Interleukin-l0- deficient mice develop chronic enterocolitis. Cell 1993;75(2):263–74.PubMedGoogle Scholar
  63. 63.
    Sellon RK, Tonkonogy S, Schultz M, Dieleman LA, Grenther W, Balish E, et al. Resident enteric bacteria are necessary for development of spontaneous colitis and immune system activation in interleukin-10-deficient mice. Infect Immun 1998;66(11):5224–31.PubMedGoogle Scholar
  64. 64.
    Spencer SD, Di Marco F, Hooley J, Pitts-Meek S, Bauer M, Ryan AM, et al. The orphan receptor CRF2–4 is an essential subunit of the interleukin 10 receptor. J Exp Med 1998;187(4):571–8.PubMedGoogle Scholar
  65. 65.
    Shull MM, Ormsby I, Kier AB, Pawlowski S, Diebold RJ, Yin M, et al. Targeted disruption of the mouse transforming growth factor-beta 1 gene results in multifocal inflammatory disease. Nature 1992;359(6397):693–9.PubMedGoogle Scholar
  66. 66.
    Kulkarni AB, Huh C-G, Becker D, Geiser A, Lyght M, Flanders KC, Roberts AB, Sporn MB, Ward JM, Karlsson S. Transforming growth factor β l null mutation in mice causes excessive inflammatory response and early death. Proc Natl Acad Sci. 1993;90:770–774.PubMedGoogle Scholar
  67. 67.
    Letterio JJ, Geiser AG, Kulkarni AB, Roche NS, Sporn MB, Roberts AB. Maternal rescue of transforming growth factor-beta 1 null mice. Science 1994;264(5167):1936–8.PubMedGoogle Scholar
  68. 68.
    Rudolph U, Finegold MJ, Rich SS, Harriman GR, Srinivasan Y, Brabet P, et al. Ulcerative colitis and adenocarcinoma of the colon in G alpha i2-deficient mice. Nat Genet 1995;10(2):143–50.PubMedGoogle Scholar
  69. 69.
    Hornquist CE, Lu X, Rogers-Fani PM, Rudolph U, Shappell S, Birnbaumer L, et al. G(alpha)i2-deficient mice with colitis exhibit a local increase in memory CD4+ T cells and proinflammatory Thl-type cytokines. J Immunol 1997; 158(3): 1068–77.PubMedGoogle Scholar
  70. 70.
    Hermiston ML, Gordon JI. Inflammatory bowel disease and adenomas in mice expressing a dominant negative N-cadherin. Science 1995;270(5239):1203–7.PubMedGoogle Scholar
  71. 71.
    Hermiston ML, Gordon JI. In vivo analysis of cadherin function in the mouse intestinal epithelium: essential roles in adhesion, maintenance of differentiation, and regulation of programmed cell death. J Cell Biol 1995;129(2):489–506.PubMedGoogle Scholar
  72. 72.
    Gottesman MM, Pastan I. Biochemistry of multidrug resistance mediated by the multidrug transporter. Annu Rev Biochem 1993;62:385–427.PubMedGoogle Scholar
  73. 73.
    Panwala CM, Jones JC, Viney JL. A novel model of inflammatory bowel disease: mice deficient for the multiple drug resistance gene, mdrla, spontaneously develop colitis. J Immunol 1998; 161: 5733–44.PubMedGoogle Scholar
  74. 74.
    Inman RD, Scofield RH. Etiopathogenesis of ankylosing spondylitis and reactive arthritis. Curr Opin Rheumatol 1994;6(4):360–70.PubMedGoogle Scholar
  75. 75.
    Jewell DP. Ulcerative colitis. In: Sleisenger MH, Fordtran JS, editors.Google Scholar
  76. Gastrointestinal disease. Pathophysiology/Diagnosis/Management. Philadelphia: W B Saunders Co, 1993:1305–1330.Google Scholar
  77. 76.
    De Vos M, Mielants H, Cuvelier C. Ileitis in the spondylarthropathies. In: Allan RN, Rhodes JM, Hanauer SB, Keighley MRB, Alexander-Williams J, Fazio VW. New York: Churchill Livingstone, 1997:451–460.Google Scholar
  78. 77.
    Hammer RE, Maika SD, Richardson JA, Tang JP, Taurog JD. Spontaneous inflammatory disease in transgenic rats expressing HLA-B27 and human beta 2m: an animal model of HLA-B27-associated human disorders. Cell 1990;63(5):1099–112.PubMedGoogle Scholar
  79. 78.
    Taurog JD, Richardson JA, Croft JT, Simmons WA, Zhou M, FernandezSueiro JL, et al. The germfree state prevents development of gut and joint inflammatory disease in HLA-B27 transgenic rats. J Exp Med 1994;180(6):2359–64.PubMedGoogle Scholar
  80. 79.
    Rath HC, Herfarth HH, Ikeda JS, Grenther WB, Hamm TE, Balish E, Taurog JD, Hammer RE, Wilson KH, Sartor RB.Normal luminal bacteria, especially Bacteroides species, mediate chronic colitis, gastritis, and arthritis in HLAB27/human beta2 microglobulin transgenic rats. J Clin Invest 1996; 98: 945–53.PubMedGoogle Scholar
  81. 80.
    Rath HC, Ikeda JS, Linde H-J, Scholmerich J, Wilson KH & Sartor RB. Varying caecal bacterial loads influences colitis and gastritis in HLA-B27 transgenic rats. Gastroenterology 1999;116:310–319.PubMedGoogle Scholar
  82. 81.
    Watanabe M, Ueno Y, Yajima T, Okamoto S, Hayashi T, Yamazaki M, et al. Interleukin 7 transgenic mice develop chronic colitis with decreased interleukin 7 protein accumulation in the colonic mucosa. J Exp Med 1998;187(3):389–402.PubMedGoogle Scholar
  83. 82.
    Kontoyiannis D, Pasparakis M, Pizarro TT, Cominelli F, Kollias G. Impaired on/off regulation of TNF biosynthesis in mice lacking TNF AU-rich elements: implications for joint and gut-associated immunopathologies. Immunity 1999;10(3):387–98.PubMedGoogle Scholar
  84. 83.
    Jacobson NG, Szabo SJ, Weber-Nordt RM, Zhong Z, Schreiber RD, Darnell JE, Murphy KM. Interleukin 12 signaling in T helper type 1 (ThI) cells involves tyrosine phosphorylation of signal transducer and activator of transcription (Stat)3 and Stat4. J Exp Med. 1995;181:1755–62.PubMedGoogle Scholar
  85. 84.
    Barbulescu K, Becker C, Schlaak JF, Schmitt E, M, Buschenfelde M & Neurath MF. Cutting edge: IL-12 and IL-18 differentially regulate the transcriptional activity of the human IFN-y promoter in primary CD4+ T lymphocytes. J Immunol. 1998;160:3642–7.PubMedGoogle Scholar
  86. 85.
    Wirtz S, Finotto S, Kanzler S, Lohse AW, Blessing M, Lehr HA, Galle PR & Neurath MF. Cutting edge: chronic intestinal inflammation in STAT-4 transgenic mice: characterization of disease and adoptive transfer by TNF-a plus IFN-y producing CD4+ T cells that respond to bacterial antigens.J Immunol 1999;162:1884–88.PubMedGoogle Scholar
  87. 86.
    Takeda K, Clausen BE, Kaisho T, Tsujimura T, Terada N, Forster I, Akira S. Enhanced Thl activity and development of chronic enterocolitis in mice devoid of stat3 in macrophages and neutrophils. Immunity 1999;10:39–49.PubMedGoogle Scholar
  88. 87.
    Mahida YR. The key role of macrophages in the immunopathogenesis of inflammatory bowel disease. Inflammatory Bowel Diseases. 2000;6:21–33.PubMedGoogle Scholar
  89. 88.
    Mashimo H, Wu DC, Podolsky DK, Fishman MC. Impaired defense of intestinal mucosa in mice lacking intestinal trefoil factor. Science 1996;274(5285):262–5.PubMedGoogle Scholar
  90. 89.
    Wright NA, Hoffmann W, Otto WR, Rio MC, Thim L. Rolling in the clover: trefoil factor family (TFF)-domain peptides, cell migration and cancer. FEBS Lett 1997;408(2):121–3.PubMedGoogle Scholar
  91. 90.
    Podolsky DK, Lynch-Devaney K, Stow JL, Oates P, Murgues B, DeBeaumont M, Sands BE & Mahida YR. Identification of human intestinal trefoil factor. Goblet cell-specific expression of a peptide targeted for apical secretion. J Biol Chem. 1993;268:6694–6702.PubMedGoogle Scholar
  92. 91.
    Dignass A, Lynch-Devaney K, Kindon H, Thim L, Podolsky DK. Trefoil peptides promote epithelial migration through a transforming growth factor beta-independent pathway. J Clin Invest 1994;94(1):376–83.PubMedGoogle Scholar
  93. 92.
    Kindon H, Pothoulakis C, Thim L, Lynch-Devaney K, Podolsky DK. Trefoil peptide protection of intestinal epithelial barrier function: cooperative interaction with mucin glycoprotein. Gastroenterology 1995;109(2):516–23.PubMedGoogle Scholar
  94. 93.
    Egger B, Procaccino F, Lakshmanan J, Reinshagen M, Hoffmann P, Patel A, et al. Mice lacking transforming growth factor alpha have an increased susceptibility to dextran sulfate-induced colitis. Gastroenterology 1997;113(3):825–32.PubMedGoogle Scholar
  95. 94.
    Egger B, Carey HV, Procaccino F, Chai NN, Sandgren EP, Lakshmanan J, et al. Reduced susceptibility of mice overexpressing transforming growth factor alpha to dextran sodium sulphate induced colitis. Gut 1998;43(1):64–70.PubMedGoogle Scholar
  96. 95.
    Goke M, Kanai M, Lynch-Devaney K, Podolsky DK. Rapid mitogenactivated protein kinase activation by transforming growth factor alpha in wounded rat intestinal epithelial cells. Gastroenterology 1998;114(4):697–705.PubMedGoogle Scholar
  97. 96.
    Bosma GC, Custer RP, Bosma MJ. A severe combined immunodeficiency mutation in the mouse. Nature 1983;301(5900):527–30.PubMedGoogle Scholar
  98. 97.
    Blunt T, Finnie NJ, Taccioli GE, Smith GC, Demengeot J, Gottlieb TM, Mizuta R, Varghese AJ, Alt FW, Jeggo PA, et al. Defective DNA-dependent protein kinase activity is linked to V(D)J recombination and DNA repair defects associated with the murine scid mutation. Cell 1995;80:813–23.PubMedGoogle Scholar
  99. 98.
    Powrie F, Leach MW, Mauze S, Menon S, Caddie LB, Coffman RL. Inhibition of Thl responses prevents inflammatory bowel disease in scid mice reconstituted with CD45RBhi CD4+ T cells. Immunity 1994;1(7):553–62.PubMedGoogle Scholar
  100. 99.
    Powrie F, Carlino J, Leach MW, Mauze S, Coffman RL. A critical role for transforming growth factor-beta but not interleukin 4 in the suppression of T helper type 1-mediated colitis by CD45RB(low) CD4+ T cells. J Exp Med 1996;183(6):2669–74.PubMedGoogle Scholar
  101. 100.
    Asseman C, Mauze S, Leach MW, Coffman RL, Powrie F. An essential role for interleukin 10 in the function of regulatory T cells that inhibit intestinal inflammation. J Exp Med 1999;190: 995–1004.PubMedGoogle Scholar
  102. 101.
    Camerini V, Sydora BC, Aranda R, Nguyen C, MacLean C, McBride WH, et al. Generation of intestinal mucosal lymphocytes in SCID mice reconstituted with mature, thymus-derived T cells. J Immunol 1998;160(6):2608–18.PubMedGoogle Scholar
  103. 102.
    Matsuda JL, Gapin L, Sydora BC, Byrne F, Binder S, Kronenberg M, et al. Systemic activation and antigen-driven oligoclonal expansion of T cells in a mouse model of colitis. J Immunol 2000;164(5):2797–806.PubMedGoogle Scholar
  104. 103.
    Cahill RJ, Foltz CJ, Fox JG, Dangler CA, Powrie F, Schauer DB. Inflammatory bowel disease: an immunity-mediated condition triggered by bacterial infection with Helicobacter hepaticus. Infect Immun 1997;65(8):3126–31.PubMedGoogle Scholar
  105. 104.
    Rudolphi A, Bonhagen K, Reimann J. Polyclonal expansion of adoptively transferred CD4+ alpha beta T cells in the colonic lamina propria of scid mice with colitis. Eur J Immunol 1996;26(5):1156–63.PubMedGoogle Scholar
  106. 105.
    Yamamoto M, Yoshizaki K, Kishimoto T & Ito H. IL-6 is required for the development of Thl cell-mediated murine colitis. J Immunol. 2000;164:4878–82.PubMedGoogle Scholar
  107. 106.
    Atreya R, Mudter J, Finotto S, Mullberg J, Jostock T, Wirtz S, Schutz M, Bartsch B, Holtmann M, Becker C, Strand D, Czaja J, Schlaak JF, Lehr HA,Autschbach F, Schurmann G, Nishimoto N, Yoshizaki K, Ito H, Kishimoto T, Galle PR, RoseJohn S, Neurath MF. Blockade of interleukin 6 trans signaling suppresses T-cell resistance against apoptosis in chronic intestinal inflammation: Evidence in Crohn disease and experimental colitis in vivo. Nat Med 2000;6:583–588.PubMedGoogle Scholar
  108. 107.
    Mahida YR, Kurlak L, Gallagher A, Hawkey CJ. High circulating concentrations of interleukin-6 in active Crohn’s disease but not ulcerative colitis. Gut 1991;32:1531–1534.PubMedGoogle Scholar
  109. 108.
    . Gross V, Andus T, Caeser I, Roth M, Schölmerich J. Evidence for continuous stimulation of interleukin-6 production in Crohn’s disease. Gastroenterology.1992;102:514-519. PubMedGoogle Scholar
  110. 109.
    Hyams JS, Fitzgerald JE, Treem WR, Wyzga N, Kreutzer DL. Relationship of functional and antigenic interleukin 6 to disease activity in inflammatory bowel disease. Gastroenterology 1993;104:1285–1292.PubMedGoogle Scholar
  111. 110.
    Ina K, Itoh J, Fukushima K, Kusugami K, Yamaguchi T, Kyokane K, Imada A, Binion DG, MussO A, West GA, Dobrea GM, McCormick TS, Lapetina EG, Levine AD, Ottaway CA, Fiocchi C. Resistance of Crohn’s disease T cells to multiple apoptotic signals is associated with Bcl-2/Bax mucosal imbalance. J Immunol 1999;163:1081–90.PubMedGoogle Scholar
  112. 111.
    Wang B, Biron C, She J, Higgins K, Sunshine MJ, Lacy E, et al. A block in both early T lymphocyte and natural killer cell development in transgenic mice with high-copy numbers of the human CD3E gene. Proc Natl Acad Sci U S A 1994;91(20):9402–6.PubMedGoogle Scholar
  113. 112.
    Hollander GA, Simpson SJ, Mizoguchi E, Nichogiannopoulou A, She J, Gutierrez-Ramos JC, et al. Severe colitis in mice with aberrant thymic selection. Immunity 1995;3(1):27–38.PubMedGoogle Scholar
  114. 113.
    Simpson Si, Hollander GA, Mizoguchi E, Allen D, Bhan AK, Wang B & Terhorst C. Expression of pro-inflammatory cytokines by TCRa(3+ and TCRy6+ T cells in an experimental model of colitis. Eur J Immunol. 1997;27:17–25.Google Scholar
  115. 114.
    Simpson Si, Shah S, Comiskey M, Jong YP, Wang B, Mizoguchi E, Bhan AK & Terhorst C. J Exp Med 1998;187:1225–1234.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Y. R. Mahida

There are no affiliations available

Personalised recommendations