Skip to main content

Saturation of a Ponomarenko Type Fluid Dynamo

  • Chapter
Dynamo and Dynamics, a Mathematical Challenge

Part of the book series: NATO Science Series ((NAII,volume 26))

Abstract

The kinematic dynamo problem is rather well understood in the case of laminar flows [1]. Several simple but clever examples have been found in the past [2, 3, 4, 5] and more realistic geometries can be easily studied numerically [6]. However, most flows of liquid metal are fully turbulent before reaching the dynamo threshold: indeed, the magnetic Prandtl number, Pm = μ0σν, where μ0 is the magnetic permeability of vacuum, σ is the electric conductivity and ν is the kinematic viscosity, is smaller than 10-5 for all liquid metals. Since the dynamo action requires a large enough magnetic Reynolds number, Pm = μ0σLU, where U is the fluid characteristic velocity and L is the characteristic scale, one expects to observe the dynamo effect when the kinetic Reynolds number, Re = UL/ν, is larger that 106. The kinematic dynamo problem with a turbulent flow is much more difficult to solve. A theoretical approach exists only when the magnetic neutral modes grow at large scale. It has been shown that the role of turbulent fluctuations may be twofold: on one hand, they decrease the effective electrical conductivity and thus inhibits dynamo action by increasing Joule dissipation. On the other hand, they may generate a large scale magnetic field through the“alpha effect” or higher order similar effects [7]. Consequently, it is not known whether turbulent fluctuations inhibits or help dynamo action. More precisely, for a given configuration of the moving solid boundaries generating the flow, the behavior of the critical magnetic Reynolds number Rm c for the dynamo threshold, as a function of the flow Reynolds number Re (respectively Pm) in the limit of large Re (respectively small Pm), is not known.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. K. Moffatt, Magnetic field generation in electrically conducting fluids, Cambridge University Press (Cambridge 1978).

    Google Scholar 

  2. A. Herzenberg, Philos. Trans. Roy. Soc. London A250, 543 (1958)

    MathSciNet  ADS  Google Scholar 

  3. D. Lortz, Plasma Phys. 10, 967 (1968).

    Article  ADS  Google Scholar 

  4. Yu. B. Ponomarenko, J. Appl. Mech. Tech. Phys. 14, 775 (1973).

    Article  ADS  Google Scholar 

  5. G. O. Roberts, Phil. Trans. Roy. Soc. London A 271, 411 (1972).

    Article  ADS  MATH  Google Scholar 

  6. M. L. Dudley and R. W. James, Proc. Roy. Soc. London A 425, 407 (1989).

    Article  MathSciNet  ADS  Google Scholar 

  7. F. Krause and K.-H. Radier, Mean field magnetohydrodynamics and dynamo theory, Pergamon Press (New-York, 1980).

    Google Scholar 

  8. F. J. Lowes and I. Wilkinson, Nature 198, 1158 (1963); 219, 717 (1968).

    Article  ADS  Google Scholar 

  9. R. H. Kraichnan, Phys. Rev. Lett. 42, 1677 (1979).

    Google Scholar 

  10. M. Meneguzzi, U. Frisch and A. Pouquet, Phys. Rev. Lett. 47, 1060 (1981).

    Article  ADS  Google Scholar 

  11. F. Krause and R. Meinel, GAFD 43, 95 (1988).

    Article  Google Scholar 

  12. A. D. Gilbert and P. L. Sulem, GAFD 51, 243 (1990).

    Article  Google Scholar 

  13. A. V. Gruzinov and P. H. Diamond, Phys. Rev. Lett. 72, 1651 (1994).

    Article  ADS  Google Scholar 

  14. S. Childress and A. M. Soward, Phys. Rev. Lett. 29, 837 (1972).

    Article  ADS  Google Scholar 

  15. A. M. Soward, Phil. Trans. R. Soc. Lond. A 275, 611 (1974).

    Article  ADS  Google Scholar 

  16. Y. Fauterelle and S. Childress, GAFD 22, 235 (1982).

    Article  Google Scholar 

  17. A. M. Soward, GAFD 35, 329 (1986).

    Article  MATH  Google Scholar 

  18. F. H. Busse, Generation of planetary magnetism by convection, Phys. Earth Planet. Inter. 12, 350–358 (1976).

    Article  ADS  Google Scholar 

  19. A. P. Bassom and A. D. Gilbert, J. Fluid Mech. 343, 375 (1997).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. P. H. Roberts, in Lectures on solar and planetary dynamos, chap. 1, M. R. E. Proctor and A. D. Gilbert eds., Cambridge University Press (Cambridge, 1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Nunez, A., Petrelis, F., Fauve, S. (2001). Saturation of a Ponomarenko Type Fluid Dynamo. In: Chossat, P., Ambruster, D., Oprea, I. (eds) Dynamo and Dynamics, a Mathematical Challenge. NATO Science Series, vol 26. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0788-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0788-7_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-7070-3

  • Online ISBN: 978-94-010-0788-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics