Skip to main content

Heteroclinic Cycles and Fluid Motions in Rotating Spheres

  • Chapter
Dynamo and Dynamics, a Mathematical Challenge

Part of the book series: NATO Science Series ((NAII,volume 26))

Abstract

In their pioneering work BUSSE & HEIKES [2] looked at the classical Bénard problem in a rotating frame. They observed rolls with a certain axial direction which seem to be stable, ie they remain unchanged for long periods of time, but suddenly the behavior changes: new rolls appear which are rotated with respect to the original rolls by approximately 60 degrees. GUCKENHEIMER & HOLMES [15] looked at the Busse-Heikes problem from a theoretical point of view. They derived a three dimensional ODE exhibiting heteroclinic cycles. Thereafter many papers have dealt with various aspects of cycles: existence, stability, bifurcations and structural stability under certain settings: [1, 3, 4, 5, 7, 8, 16, 17, 18, 20, 21, 22, 25, 23, 24, 26, 27, 28, 29]. Due to the fact that solutions which pass near steady states remain there for a long time heteroclinic cycles serve as a model for metastable behavior. We see such a metastable behavior if we look at the polarity reversals of the magnetic field of the Earth, see for example GHIL & CHILDRESS [13]. Since the origin of the magnetic field and the mechanism of its reversals are unknown we try to look at it from a dynamical systems point of view and ask ourselves whether there are heteroclinic cycles in this problem. Here, we only look at the fluid mechanical part and not at full MHD-equations. In this paper we emphasize the role of rotation and the question what happens to heteroclinic cycles in the presence of rotations. Of course this approach dictates to look at the non rotating case first and treat the rotating case as a perturbation of the non rotating one. It is not clear whether such a approach is reasonable for studying the Earth’ field but on the other hand numerical computations indicate that the region of validity of the results which are presented here exceeds the marginal speeds of rotation allowed by the usual perturbation methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Armbruster, D. andP. Chossat: 1991, ‘Heteroclinic cycles in a spherically invariant system’. Physica D 50, 155–176.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Busse, F.H. and K. Heikes: 1980, ‘Convection in a rotating layer: a simple case of turbulence’. Science 208, 173.

    Article  ADS  Google Scholar 

  3. Chossat, P. and D. Armbruster: 1991, ‘structurally Stable Heteroclinic Cycles in a System with O(3)-Symmetry’. In: M. Roberts and I. Stewart (eds.): Singularity Theory and Its Applications, Warwick 1989, Part II. pp. 38–62. Lecture Notes in Mathematics 1463.

    Google Scholar 

  4. Chossat, P. and F. Guyard: 1996, ‘Heteroclinic cycles in bifurcation problems with O(3) symmetry and the Spherical Bénard Problem’. J. Nonl. Sc. 6, 201–238.

    Article  MathSciNet  MATH  Google Scholar 

  5. Chossat, P., F. Guyard, and R. Lauterbach: 1999a, ‘Heteroclinic sets in spherically invariant systems and their perturbations’. J. Nonl Sc. 9, 479–524.

    Article  MATH  Google Scholar 

  6. Chossat, P. and G. Iooss: 1994, The Couette-Taylor Problem, No. 102 in Studies in Applied Mathematics. Springer Verlag.

    Google Scholar 

  7. Chossat, P., M. Krupa, I. Melbourne, and A. Scheel: 1997, ‘Transverse bifurcations of homoclinic cycles’. Physica D 100, 85–100.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Chossat, P., M. Krupa, I. Melbourne, and A. Scheel: 1999b, ‘Magnetic dynamos in rotating convection-a dynamical systems approach’. Dyn. of Cont., Discr. and Imp. Syst. 5, 327–340.

    MATH  Google Scholar 

  9. Chossat, P. and R. Lauterbach: 2000, Methods in Equivariant Bifurcations and Dynamical Systems, No. 15 in Advanced Series in Nonlinear Dynamics. World Scientific.

    Google Scholar 

  10. Chossat, P., R. Lauterbach, and I. Melbourne: 1991, ‘steady-State Bifurcation with O(3)-Symmetry’ Arch. Rat Mech. Anal 113(4), 313–376.

    Article  MathSciNet  MATH  Google Scholar 

  11. Field, M.: 1977, ‘Transversality in G-manifolds’. Trans. Am. Math. Soc. 231(4), 429–450.

    MathSciNet  MATH  Google Scholar 

  12. Friedrich, R. and H. Haken: 1986, ‘static, wavelike, and chaotic thermal convection in spherical geometries’. Physical Rev. A 34, 2100–2120.

    Article  ADS  Google Scholar 

  13. Ghil, M. and S. Childress: 1986, Topics in Geophysical Fluid Dynamics: Athmospheric Dynamics, Dynamo Theory, and Climate Dynamics, No. 39 in Applied Math. Sciences. New York: Springer Verlag.

    Google Scholar 

  14. Golubitsky, M., I. Stewart, and D. G. Schaeffer: 1988, Singularities and Groups in Bifurcation Theory, Vol. II. Springer Verlag.

    Google Scholar 

  15. Guckenheimer, J. and P. Holmes: 1988, ‘structurally stable heteroclinic cycles’. Math. Proc. Cambridge Phil. Soc. 103, 189–192.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Guyard, F.: 1994, ‘Interactions de mode dans les problèmes de bifurcation avec symètry sphérique’. Ph.D. thesis, Université de Nice Sophia — Antipolis.

    Google Scholar 

  17. Guyard, F. and R. Lauterbach: 1997, ‘Forced symmetry breaking perturbations for periodic solutions’. Nonlinearity 10, 291–310.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Guyard, F. and R. Lauterbach: 1999, ‘Forced symmetry breaking: theory and applications’. In: Pattern Formation in Continuous and Coupled Systems, pp. 121–135.

    Google Scholar 

  19. Ihrig, E. and M. Golubitsky: 1984, ‘Pattern Selection with O(3)-Symmetry’. Physica 13D pp. 1–33.

    MathSciNet  ADS  Google Scholar 

  20. Krupa, M.: to appear, ‘Robust heteroclinic cycles’. J. Nonl. Sc.

    Google Scholar 

  21. Krupa, M. and I. Melbourne: 1995, ‘Asymptotic Stability of Heteroclinic Cycles in Systems with Symmetry’. Erg od. Th. Dynam. Sys. 15(1), 121–147.

    MathSciNet  MATH  Google Scholar 

  22. Krupa, M. and I. Melbourne: 1996, ‘Nonasymptotically stable attractors in O(2) mode interactions’. In: W. Langdord and W. Nagata (eds.): Normal Forms and Homoclinic Chaos.

    Google Scholar 

  23. Lauterbach, R.: 1996, ‘symmetry Breaking in Dynamical Systems’. In: H. W. Broer, S. van Gils, I. Hoveijn, and F. Takens (eds.): Nonlinear Dynamical Systems and Chaos.

    Google Scholar 

  24. Lauterbach, R., S. Maier, and E. Reißner: 1996, ‘A systematic study of heteroclinic cycles in dynamical system with broken symmetries’. Proc. Roy. Soc. Edinburgh 126A, 885–909.

    Article  Google Scholar 

  25. Lauterbach, R. and M. Roberts: 1992, ‘Heteroclinic Cycles in Dynamical Systems with Broken Spherical Symmetry’. J. Diff. Equat 100, 428–448.

    Article  MathSciNet  Google Scholar 

  26. Maier-Paape, S. and R. Lauterbach: 1998, ‘Heteroclinic cycles for reaction diffusion systems by forced symmetry breaking’. Trans. Am. Math. Soc. (to appear).

    Google Scholar 

  27. Melbourne, L: 1989, ‘Intermittency as a codimension three phenomenon’. J. Dyn. Diff. Equat. 1(4), 347–367.

    Article  MathSciNet  MATH  Google Scholar 

  28. Melbourne, I.: 1991, ‘An example of a non-asymptotically stable attractor’. Nonlinearity 4, 835–844.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. Melbourne, I., P. Chossat, and M. Golubitsky: 1989, ‘Heteroclinic cycles involving periodic solutions in mode interactions with O(2)-symmetry’. Proc. Roy. Soc. Edinburgh 113(5), 315–345.

    Article  MathSciNet  MATH  Google Scholar 

  30. Vanderbauwhede, A.: 1982, Local Bifurcation and Symmetry, Vol. 75 of Research Notes in Mathematics. Pitman.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lauterbach, R. (2001). Heteroclinic Cycles and Fluid Motions in Rotating Spheres. In: Chossat, P., Ambruster, D., Oprea, I. (eds) Dynamo and Dynamics, a Mathematical Challenge. NATO Science Series, vol 26. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0788-7_41

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0788-7_41

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-7070-3

  • Online ISBN: 978-94-010-0788-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics