The Solar Dynamo: Axial Symmetry and Homegeneity Broken

  • A. Ruzmaikin
Part of the NATO Science Series book series (NAII, volume 26)


The Sun is a natural site for a dynamo. In fact, the dynamo concept was introduced by Larmor in his 1919 report to the British Association for Advanced Science entitled”How could a rotating body as the Sun become magnetic?” Cowling’s famous anti-dynamo theorem appeared in his paper ”Magnetic fields of sunspots” (MNRAS. 94, 39 ,1934). Yet the origin of the Sun’s magnetic field is not well understood. Some scientists still challenge the dynamo as the source of solar magnetic field [7].


Interplanetary Magnetic Field Convection Zone Solar Surface Solar Magnetic Field Carrington Rotation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Altschuler, M. D., D.E. Trotter, G. Newkirk, Jr., and R. Howard (1974) The large-scale solar magnetic field, Solar Phys., 39, 3–17.ADSCrossRefGoogle Scholar
  2. 2.
    Brandenburg, A. (2000), Astrophys. J (submitted)Google Scholar
  3. 3.
    Charbonneau, P., and K. B. MacGregor (1997) Solar interface dynamos. II. Linear, kinematic models in spherical geometry, Astrophys. J., 486, 502–514.ADSCrossRefGoogle Scholar
  4. 4.
    Chossat, P., and R. Lauterbach (2000) Methods in equivariant bifurcations and dynamical systems, Advanced Series in Nonlinear Dynamics — Vol. 15, World Scientific Pubis.Google Scholar
  5. 5.
    Feynman, J. (1997) in Coronal Mass Ejections, N. Crooker, J. A. Joselyn and J. Feynman, eds., Geophys. Monograph 99, AGU, p. 49.Google Scholar
  6. 6.
    Gaizauskas, V., K. Harvey, J. Harvey, and C. Zwaan (1983) Large-scale patterns formed by solar active regions, Astrophys. J, 265, 1056–1065.ADSCrossRefGoogle Scholar
  7. 7.
    Gough, D. (2000) Towards understanding solar convection and activity, Solar Phys., 192, 3–26.ADSCrossRefGoogle Scholar
  8. 8.
    Harvey, K.L. and C. Zwaan (1993) Properties and emergence patterns of bipolar active regions, Solar Phys., 148, 85.ADSCrossRefGoogle Scholar
  9. 9.
    Haurwitz, M.W. (1968) Solar longitude distributions of proton flares, meter bursts, and sunspots, Astrophys. J., 151, 351–364.ADSCrossRefGoogle Scholar
  10. 10.
    Hoeksema, J.T. and P.H. Scherrer (1987) Rotation of the coronal magnetic field, Astrophys. J., 318, 428–436.ADSCrossRefGoogle Scholar
  11. 11.
    Howe, R., J. Christensen-Dalsgard, F. Hill, R.W. Komm, R.M. Larsen, J. Schou, M.J. Thompson, and J. Toomre (2000) Dynamic variations at the base of the solar convection zone, Science, 287, 2456–2460.ADSCrossRefGoogle Scholar
  12. 12.
    Ivanova, T.S., and A. Ruzmaikin (1985) Three-dimensional model for generation of the mean solar magnetic field. Astron. Nachr., 306, 177–186.ADSMATHCrossRefGoogle Scholar
  13. 13.
    Kosovichev, A.G. and 33 co-authors.: 1997, Structure and rotation of the solar interior: initial results from the MDI medium program, Solar Phys., 170, 43–61.ADSCrossRefGoogle Scholar
  14. 14.
    Krause, F., and K.-H. Rädler, Mean-Field Electrodynamics and Dynamo, Springer Verlag, 1981.Google Scholar
  15. 15.
    Neugebauer, M., E. J. Smith, J. Feynman, A. Ruzmaikin and A. Vaughan (2000) The solar magnetic field and the solar wind: Existence of preferred longitudes, J. Geophys. Res., 105, 2315–2324.ADSCrossRefGoogle Scholar
  16. 16.
    Parker, E.N. (1979) Solar Magnetic Fields, Oxford Univ. Press, Oxford.Google Scholar
  17. 17.
    Rucklidge, A. M., N.O. Weiss, D.P. Brownjohn, P.C. Matthews and M.R. E. Proctor, (2000) Compressible magnetoconvection in three dimensions: pattern formation in a strongly stratified layer, J. Fluid Mech., 419, 283–323.MathSciNetADSMATHCrossRefGoogle Scholar
  18. 18.
    Ruzmaikin, A. (1998) Clustering of emerging magnetic flux, Solar Phys., 181, 1–12.ADSCrossRefGoogle Scholar
  19. 19.
    Ruzmaikin, A., J. Feynman, Neugebauer, M., and E. J. Smith (2000) Preferred solar longitudes with signatures in the solar wind, J. Geophys. Res., submittedGoogle Scholar
  20. 20.
    Svalgaard, L., and J.M. Wilcox, Long term evolution of solar sector structure, Solar Phys., 41, 461–475, 1975.ADSCrossRefGoogle Scholar
  21. 21.
    Stix, M. (1974) Comments on the solar dynamo, Astron. & Astrophys., 37, 121–133.ADSGoogle Scholar
  22. 22.
    Vitinsky, Yu. (1960), Izvest. Atsron. Obs. Poulkovo, 21, N163, p.96.ADSGoogle Scholar
  23. 23.
    Wentzel, D.G., and P.E. Sieden (1992) Solar active regions as a percolation phenomenon, Astrophys. J., 390, 280–289.ADSCrossRefGoogle Scholar
  24. 24.
    Zeldovich, Ya. B., A. Ruzmaikin and D.D. Sokoloff(1983) Magnetic Fields in Astrophysics, Gordon and Breach, London-Paris-New York.Google Scholar
  25. 25.
    Zwaan, C. (1978) Solar Phys., 169, 265.ADSGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • A. Ruzmaikin
    • 1
  1. 1.California Institute of TechnologyJet Propulsion LaboratoryPasadenaUSA

Personalised recommendations