The Inverse Cascade in Turbulent Dynamos

  • Axel Brandenburg
Part of the NATO Science Series book series (NAII, volume 26)

Abstract

The emergence of a large scale magnetic field from randomly forced isotropic strongly helical flows is discussed in terms of the inverse cascade of magnetic helicity and the α-effect. In simulations of such flows the maximum field strength exceeds the equipartition field strength for large scale separation. However, helicity conservation controls the speed at which this final state is reached. In the presence of open boundaries magnetic helicity fluxes out of the domain are possible. This reduces the timescales of the field growth, but it also tends to reduce the maximum attainable field strength.

Keywords

Boulder Mirror Symmetry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berger, M., &; Field, G. B. (1984) The topological properties of magnetic helicity. J. Fluid Mech. 147, 133–148MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    Berger, M. A., & Ruzmaikin, A. (2000) Rate of helicity production by solar rotation. J. Geophys. Res. 105, 10481–10490ADSCrossRefGoogle Scholar
  3. 3.
    Blackman, E. G., & Field, G. F.(2000) Constraints on the magnitude of a in dynamo theory. Astrophys. J. 534, 984–988ADSCrossRefGoogle Scholar
  4. 4.
    Brandenburg, A. (2000) The inverse cascade and nonlinear alpha-effect in simulations of isotropic helical hydromagnetic turbulence, Astrophys. J., astro-ph/0006186 (B2000)Google Scholar
  5. 5.
    Brandenburg, A., & Subramanian, K. (2000) Large scale dynamos with ambipolar diffusion nonlinearity. Astron. Astrophys. 361, L33–L36ADSGoogle Scholar
  6. 6.
    Brandenburg, A., Bigazzi, A., & Subramanian, K.(2000) The helicity constraint in turbulent dynamos with shear, Mon. Not. Roy. Astron. Soc., astro-ph/0011081Google Scholar
  7. 7.
    Frisch, U., Pouquet, A., Léorat, J., Mazure, A. (1975) Possibility of an inverse cascade of magnetic helicity in hydrodynamic turbulence. J. Fluid Mech. 68, 769–778ADSMATHCrossRefGoogle Scholar
  8. 8.
    Kleeorin, N. I, Moss, D., Rogachevskii, I., & Sokoloff, D. (2000) Helicity balance and steady-state strength of the dynamo generated galactic magnetic field. Astron. Astrophys. 361, L5–L8ADSGoogle Scholar
  9. 9.
    Krause, F., & Rädler, K.-H. (1980) Mean-Field Magnetohydrodynamics and Dynamo Theory. Pergamon Press, OxfordMATHGoogle Scholar
  10. 10.
    Moffatt, H.K. (1978) Magnetic Field Generation in Electrically Conducting Fluids. CUP, CambridgeGoogle Scholar
  11. 11.
    Pouquet, A., Frisch, U., & Léorat, J. (1976) Strong MHD helical turbulence and the nonlinear dynamo effect. J. Fluid Mech. 77, 321–354ADSMATHCrossRefGoogle Scholar
  12. 12.
    Steenbeck, M., Krause, F., & Rädler, K.-H. (1966) Berechnung der mittleren Lorentz-Feldstärke v x B für ein elektrisch leitendendes Medium in turbulenter, durch Coriolis-Kräfte beeinflußter Bewegung. Z. Naturforsch. 21a, 369–376 See also the translation in Roberts & Stix (1971) The turbulent dynamo, Tech. Note 60, NCAR, Boulder, ColoradoADSGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • Axel Brandenburg
    • 1
    • 2
  1. 1.NorditaCopenhagen ØDenmark
  2. 2.Mathematics DepartmentUniv. of NewcastleUK

Personalised recommendations