Skip to main content

Advances in the Determination of the Architecture of Active Sites in Solid Catalysts

  • Chapter
Catalysis by Unique Metal Ion Structures in Solid Matrices

Part of the book series: NATO Science Series ((NAII,volume 13))

Abstract

We review some of the advances in the determination of the atomic architecture of solid catalysts, in particular using X-ray, neutron scattering and spectroscopic techniques. The aim, wherever possible, is to arrive at such structures under operating (catalytic) conditions. It is essential to retrieve such information in situ, because it then can serve as a realistic platform for the construction of new (and, if possible, superior) catalysts. High-flux X-ray sources (from synchrotron as well as rotating anode laboratory sources) may be used both in an energy-dispersive and wavelength-dispersive manner to track the structural changes that occur during catalyst activation and catalytic turnover. The X-ray diffractograms, by Rietveld profile analysis (in the wavelength-dispersive mode), then yield the atomic architecture of the active sites. This approach has proved particularly helpful in probing the nature of Ni, Na-ion-substituted zeolite Y catalysts for the trimerisation of acetylene to benzene. Computational studies support this fact, which is also in line with very recent neutron scattering studies carried out with catalyst samples in which the 62Ni isotope replaces natural Ni. In addition, a summarizing account is given of our work on the determination of the architecture of the active sites of nanoparticle bimetallic carbided hydrogenation catalysts, metal ion (Mn, Fe or Co) substituted aluminophosphate molecular sieves catalysts and titanium-centred epoxidation catalysts grafted onto mesoporous silica.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Thomas, J.M. (1996) Catalysis and surface science at high resolution, Farad. Discuss. (105) 1–31

    Article  CAS  Google Scholar 

  2. Thomas, J.M. (1997) The ineluctable need for in situ methods of characterising solid catalysts as a prerequisite to engineering active sites, Chem-A Euro J. 3 1557–1562

    Article  CAS  Google Scholar 

  3. Sankar, G., and Thomas, J.M. (2000) Combining X-ray absorption with X-ray diffraction for the structural elucidation of catalysts, Top. Catal. 8, 1–21

    Article  Google Scholar 

  4. Thomas, J.M., Greaves, G.N., Catlow, C.R.A. (1995) Solid catalysts studied under operating-conditions, Nuc. Inst.& Meth. In Phys. Res. Sect. B-Beam Interactions With Materials And Atoms 97 1–10

    Article  CAS  Google Scholar 

  5. Cheetham, A.K., and Wilkinson, A.P. (1992) Synchrotron X-ray and neutron diffraction studies in solid-state chemistry, Angew. Chem. Int. Ed 31 1557–1570

    Article  Google Scholar 

  6. Catlow. C.R.A., and Greaves. G.N., (1990) Applications of Synchrotron Radiation, Blackie, Glasgow

    Google Scholar 

  7. Koningsberger, D.C., Mojet, B.L., van Dorssen, G.E., and Ramaker, D.E. (2000) XAFS spectroscopy; fundamental principles and data analysis, Topics in Catal. 10 143–155

    Article  CAS  Google Scholar 

  8. Clegg, W. (2000) Synchrotron chemical crystallography, J. Chem. Soc. Dalton Trans. 3223–3232

    Google Scholar 

  9. Louer, D. (1998) Advances in powder diffraction analysis, Act. Cryst Sect. A 54 922–933

    Article  Google Scholar 

  10. Cernik, R.J., Clegg, W., Catlow, C.R.A., Bushnell-Wye, G., Flaherty, J.V., Greaves, G.N., Burrows, I., Taylor, D.J., Teat, S.J., and Hamichi, M. (1997) A new high-flux chemical and materials crystallography station at the SRS Daresbury. 1. Design, construction and test results, J. Synchrotron Radiation 4 279–286

    Article  CAS  Google Scholar 

  11. Roberts, M.A., Finney, J.L., Bushnell-Wye, G. (1998) Development of curved image-plate techniques for studies of powder diffraction, liquids and amorphous materials EPDIC 5, Pts 1 and 2 Mater Sci Forum 278-2, 318–322

    Google Scholar 

  12. Smith, L., Cheetham, A.K., Morris, R.E., Marchese, L., Thomas, J.M., Wright, P.A., Chen, J. (1996) On the nature of water bound to a solid acid catalyst, Science 271 799–802

    Article  CAS  Google Scholar 

  13. Vitale, G., Bull, L.M., Morris, R.E., Cheetham, A.K., Toby, B.H., Coe, C.G., and Macdougall, J.E. (1995) Combined neutron and x-ray-powder diffraction study of zeolite Ca LSX and a H-2 nmr-study of its complex with benzene, J. Phys. Chem. 99 16087–16092

    Article  CAS  Google Scholar 

  14. Bush, T.S., Catlow, C.R.A., and Battle, P.D. (1995) Evolutionary programming techniques for predicting inorganic crystal-structures, J. Mater. Chem. 5 1269–1272

    Article  CAS  Google Scholar 

  15. Engel, G.E., Wilke, S., König, O., Harris, K.D.M., Leusen, F.J.J. (1999) PowderSolve-a complete package for crystal structure solution from powder diffraction patterns, J. Appl. Cryst. 32 1169–1179

    Article  CAS  Google Scholar 

  16. Akporiaye, D.E., Fjellvag, H., Halvorsen, E.N., Hustveit, J., Karlsson, A., Lillerud, K.P. (1996) UiO-7: A new aluminophosphate phase solved by simulated annealing and high-resolution powder diffraction, J. Phys. Chem. 100 16641–16646

    Article  CAS  Google Scholar 

  17. Kaszkur, Z.A., Jones, R.H., Bell, R.G., Catlow, C.R.A., and Thomas, J.M. (1996) The location of para-xylene in the pores of a model ferrierite catalyst: A powder diffraction and computational study, Mol. Phys. 89 1345–1357

    Article  CAS  Google Scholar 

  18. Dooryhee, E., Greaves, G.N., Steel, A.T., Townsend, R.P., Carr, S.W., Thomas, J.M., and Catlow, C.R.A (1990) Structural studies of high-area zeolitic adsorbents and catalysts by a combination of high-resolution x-ray-powder diffraction and x-ray absorption-spectroscopy, Farad. Discuss. 89 119–136

    Article  CAS  Google Scholar 

  19. Dooryhee, E., Catlow, C.R.A., Couves, J.W., Maddox, P.J., Thomas, J.M., Greaves, G.N., Steel, A.T., Townsend, R.P. (1991) A study of cation environment and movement during dehydration and reduction of nickel-exchanged zeolite-Y by X-ray absorption and diffraction, J. Phys. Chem. 95 4514–4521

    Article  CAS  Google Scholar 

  20. Chen, J.S., Sankar, G., Thomas, J.M., Xu, R.R., Greaves, G.N., and Waller, D. (1992) Cobalt-substituted aluminophosphate molecular-sieves-X-ray absorption, infrared spectroscopic, and catalytic studies, Chem. Mater. 4 1373–1379

    Article  CAS  Google Scholar 

  21. Barrett, P.A., Sankar, G., Catlow, C.R.A., and Thomas, J.M. (1996) X-ray absorption spectroscopic study of Bronsted, Lewis, and redox centers in cobalt-substituted aluminum phosphate catalysts, J. Phys. Chem., 100, 8977–8985

    Article  CAS  Google Scholar 

  22. Evans, J. (1997) Tilden Lecture: Shining light on metal catalysts, Chem. Rev. S 26 11–19

    Google Scholar 

  23. Sankar, G., Thomas, J.M., and Catlow, C.R.A. (2000) Combining X-ray absorption with X-ray diffraction for the structural elucidation of catalysts, Top. Catal. 10,255–264

    Article  CAS  Google Scholar 

  24. Thomas, J.M., Greaves, G.N., Sankar, G., Wright, P.A., Chen, J.S., Dent, A.J., Marchese, L. (1994) On the nature of the active-site in a CoAPO-18 solid acid catalyst, Angew. Chem. Int. Ed. 33 1871–1873

    Article  Google Scholar 

  25. Sankar, G., Rey, F., Thomas, J.M., Greaves, G.N., Corma, A., Dobson, B.R., Dent, A.J. (1994) Probing active-sites in solid catalysts for the liquid-phase epoxidation of alkenes, J. Chem. Soc. Chem. Commn 2279–2280

    Google Scholar 

  26. Sankar, G., Thomas, J.M., Rey, F. and Greaves, G.N. (1995) Probing the onset of crystallization of a microporous catalyst by combined X-ray absorption spectroscopy and X-ray diffraction, J. Chem. Soc. Chem. Commn. 2549–2550

    Google Scholar 

  27. Couves, J.W., Thomas, J.M., Waller, D., Jones, R.H., Dent, A.J., Derbyshire, G.E. and Greaves, G.N. (1991) Tracing the conversion of aurichalcite to a copper catalyst by combined x-ray absorption and diffraction, Nature 354 465–468

    Article  CAS  Google Scholar 

  28. Couves, J.W., Thomas, J.M., Catlow, C.R.A., Greaves, G.N., Baker, G., and Dent, A.J. (1990) In-situ studies of the dehydration of zeolitic catalysts by time-resolved energy-dispersive x-ray absorption-spectroscopy, J. Phys. Chem. 94, 6517–6519

    Article  CAS  Google Scholar 

  29. Frahm, R. (1988) Quick scanning exafs — 1st experiments, Nuc. Inst. & Meth. In Phys. Res. Sect. A-Accelerators Spectrometers Detectors And Associated Equipment 270 578–581

    Article  Google Scholar 

  30. Frahm, R. and Wong, J. (1993) How quick is QEXAFS, Jap. J. App. Phys. Part 1-regular papers short notes & review papers 32: 188–191

    CAS  Google Scholar 

  31. Thomas, J.M., and Greaves, G.N. (1993) Combined EXAFS and XRD for the in-situ structural elucidation of solid catalysts under operating-conditions, Catalysis Letters 20 337–343

    Article  CAS  Google Scholar 

  32. Clausen, B.S., Grabaek, L., Steffensen, G., Hansen, P.L., Topsoe, H. (1993) A combined QEXAFS XRD method for online, in-situ studies of catalysts — examples of dynamic measurements of cu-based methanol catalysts, Catal. Lett 20 23–36

    Article  CAS  Google Scholar 

  33. Sankar, G., Wright, P.A., Natarajan, S., Thomas, J.M., Greaves, G.N., Dent, A.J., Dobson, B.R., Ramsdale, C.A., Jones, R.H. (1993) Combined QUEXAFS-XRD-a new technique in high-temperature materials chemistry — an illustrative in-situ study of the zinc oxide-enhanced solid-state production of cordierite from a precursor zeolite, J. Phys. Chem. 97 9550–9554

    Article  CAS  Google Scholar 

  34. Thomas, J.M. and Greaves, G.N. (1994) Probing solid catalyst under operating-conditions, Science 265 1675–1676

    Article  CAS  Google Scholar 

  35. Williams, C., Rayment, T., and Thomas, J.M. (1988), Monitoring cation-site occupancy of nickel-exchanged zeolite-Y catalysts by high-temperature insitu x-ray-powder diffractometry, J. Chem. Soc. Farad. Trans. I, 84, 2915–2931

    Article  Google Scholar 

  36. George, A.R., Catlow, C.R.A., and Thomas, J.M. (1991) Determining the environment of transition-metal ions in zeolitic catalysts — a combined computational and synchrotron-based study of nickel ions in zeolite-Y, Catal. Lett. 8, 193–200

    Article  CAS  Google Scholar 

  37. George, A.R., Catlow, C.R.A., and Thomas, J.M. (1995) Catalyzed cyclotrimerization of acetylene — a computational study, J. Chem. Soc. Farad. Trans. 91, 3975–3981

    Article  CAS  Google Scholar 

  38. Turner, J.F.C., Benmore, C.J., Barker, C.M., Kaltsoyannis, N., Thomas, J.M., David, W.I.F. and Catlow, C.R.A. (2000) Probing the nature of acetylene bound to the active site of a NiNa-zeolite Y catalyst by in situ neutron scattering, J. Phys. Chem B 104, 7570–7573

    Article  CAS  Google Scholar 

  39. Roberts, M.A., Sankar, G., Thomas, J.M., Jones, R.H., Du, H., Chen, J., Pang, W. and Xu, R. (1996) Synthesis and structure of a layered titanosilicate catalyst with five-coordinate titanium, Nature 381 401–404

    Article  CAS  Google Scholar 

  40. Binsted, N., Pack, M.J., Weiler, M.T. and Evans, J. (1996) Combined EXAFS and powder diffraction analysis, J. Am. Chem. Soc. 118 10200–10210

    Article  CAS  Google Scholar 

  41. Sankar, G., Raja, R., and Thomas, J.M. (1998) Redox solid catalysts for the selective oxidation of cyclohexane in air, Catal. Lett. 55 15–23

    Article  CAS  Google Scholar 

  42. Thomas, J.M., Raja, R., Sankar, G., and Bell, R.G. (1999) Molecular-sieve catalysts for the selective oxidation of linear alkanes by molecular oxygen, Nature 227–230

    Google Scholar 

  43. Norby, P., and Hanson, J.C (1998) Hydrothermal synthesis of the microporous aluminophosphate CoAPO-5; in situ time-resolved synchrotron X-ray powder diffraction studies, Catalysis Today, 39, 301–309

    Article  CAS  Google Scholar 

  44. Christensen, A.N., Norby, P., and Hanson, J.C (1998) Crystallization of microporous aluminophosphates and Me2+-substituted aluminophosphates investigated by in situ synchrotron X-ray powder diffraction, Microporous and Mesoporous Materials 20, 349–354

    Article  CAS  Google Scholar 

  45. Rey, F., Sankar, G., Thomas, J.M., Barrett, P.A., Lewis, D.W., Catlow, C.R.A, Clark, S.M., and Greaves, G.N. (1995) Synchrotron-based method for the study of crystallization — templated formation of CoALPO-5 catalyst, Chem. Mater. 7, 1435–1436

    Article  CAS  Google Scholar 

  46. Francis, R.J., and O’Hare, D. (1998) The kinetics and mechanisms of the crystallisation of microporous materials, J. Chem. Soc. Dalton Trans. 1 3133–3148.

    Article  Google Scholar 

  47. Muncaster, G., Davies, A.T., Sankar, G., Catlow, C.R.A., Thomas, J.M., Colston, S.L., Barnes, P., Walton, R.I. and O’Hare, D. (2000) On the advantages of the use of the three-element detector system for measuring EDXRD patterns to follow the crystallisation of open-framework structures, Phys. Chem. Chem. Phys. 2 3523–3527

    Article  CAS  Google Scholar 

  48. Davies, A.T., Sankar, G., Catlow, C.R.A. and Clark, S.M (1997) Following the crystallization of microporous solids using EDXRD techniques, J. Phys. Chem B. 101, 10115–10123

    Article  CAS  Google Scholar 

  49. Maschmeyer, T., Rey, F., Sankar, G. and Thomas, J.M. (1995) Heterogeneous catalysts obtained by grafting metallocene complexes onto mesoporous silica, Nature 378, 159–162

    Article  CAS  Google Scholar 

  50. Oldroyd, R.D., Sankar, G., Thomas, J.M., and Ozkaya, D. (1998) Enhancing the performance of a supported titanium epoxidation catalyst by modifying the active center, J. Phys. Chem. 102, 1849–1855

    CAS  Google Scholar 

  51. Sankar, G., Thomas, J.M., Greaves, G.N., and Dent, A.J. (1997) Use of multiple scattering in determining the local structure around metal ions substituted in zeotype catalysts, J. De Phys. 7 C2 871–872

    Google Scholar 

  52. Raja, R., Sankar, G., and Thomas, J.M. (2000) Designing a molecular sieve catalyst for the aerial oxidation of n-hexane to adipic acid, Angew. Chemie-Int. Ed 39 2313–2316

    Article  CAS  Google Scholar 

  53. Raja, R., Sankar, G. and Thomas, J.M. (1999) Powerful redox molecular sieve catalysts for the selective oxidation of cyclohexane in air, J. Am. Chem. Soc. 121 11926–11927

    Article  CAS  Google Scholar 

  54. Dugal, M., Sankar, G., Raja, R. and Thomas, J.M. (2000) Designing a heterogeneous catalyst for the production of adipic acid by aerial oxidation of cyclohexane, Angew. Chemie-Int. Ed. 39 2310–2313

    Article  CAS  Google Scholar 

  55. Shephard, D.S., Maschmeyer, T., Johnson, B.F.G., Thomas, J.M., Sankar, G., Ozkaya, D., Zhou, W.Z., Oldroyd, R.D. and Bell, R.G. (1997) Bimetallic nanoparticle catalysts anchored inside mesoporous silica, Angew. Chemie-Int. Ed 36, 2242–2245

    Article  CAS  Google Scholar 

  56. Shephard, D.S., Maschmeyer, T., Sankar, G., Thomas, J.M., Ozkaya, D., Johnson, B.F.G., Raja, R., Oldroyd, R.D., Bell, R.G. (1998) Preparation, characterisation and performance of encapsulated copper-ruthenium bimetallic catalysts derived from molecular cluster carbonyl precursors, Chem.-A Euro. J. 4, 1214–1224

    Article  CAS  Google Scholar 

  57. Raja, R., Sankar, G., Hermans, S., Shephard, D.S., Bromley, S., Thomas, J.M., Johnson, B.F.G. (1999) Preparation and characterisation of a highly active bimetallic (Pd-Ru) nanoparticle heterogeneous catalyst, Chem Commn. 1571–1572.

    Google Scholar 

  58. Muncaster, G., Sankar, G., Catlow, C.R.A., Thomas, J.M., Bell, R.G., Wright, P.A., Coles, S., Teat, S.J., Clegg, W., Reeve, W. (1999) An in situ microcrystal X-ray diffraction study of the synthetic aluminophosphate zeotypes DAF-1 and CoAPSO-44, Chem. Mater. 11158–11163

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sankar, G., Raja, R., Thomas, J.M., Gleeson, D. (2001). Advances in the Determination of the Architecture of Active Sites in Solid Catalysts. In: Centi, G., Wichterlová, B., Bell, A.T. (eds) Catalysis by Unique Metal Ion Structures in Solid Matrices. NATO Science Series, vol 13. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0782-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0782-5_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6875-5

  • Online ISBN: 978-94-010-0782-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics