Skip to main content

Ab Initio Simulation of Cu-Species in Zeolites: Siting, Coordination, UV-Vis Spectra and Reactivity

  • Chapter
Catalysis by Unique Metal Ion Structures in Solid Matrices

Part of the book series: NATO Science Series ((NAII,volume 13))

Abstract

The suitability of cluster models and combined quantum mechanics/interatomic potential function models for the description of properties of Cu/zeolite systems is discussed. The latter are able to discriminate between different types of sites in a given framework and between different frameworks. Two types of Cu+ sites are identified. Type I sites are found at the channel walls with Cu+ coordinated to 3 – 4 oxygen atoms of a five- or six-membered (TO)n ring. Type II sites occur at the channel intersections with Cu+ coordinated to two O atoms of the A1O4 tetrahedron only. Bands observed in photoluminescence spectra are assigned to these types of sites. Cu+ ions on the channel intersection (type I) bind NO stronger than naked Cu+ ions and it is suggested that these sites are catalytically active. A possible explanation of the higher catalytic activity of Cu/ZSM-5 compared to Cu/FER is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. See other contributions to this volume and references therein.

    Google Scholar 

  2. Iwamoto, M., Furukawa, H., Mine, Y., Uemura, F., Mikuriya, S., and Kagawa, S. (1986) Copper(ii) ionexchanged ZSM-5 zeolites as highly-active catalysts for direct and continuous decomposition of nitrogen monoxide J. Chem. Soc., Chem. Commun., 1272–1273.

    Google Scholar 

  3. Hass, K.C. and Schneider, W. F. (1999) Density functional studies of adsorbates in Cu-exchanged zeolites: model comparisons and SOX binding, Phys. Chem. Chem. Phys. 1, 639–648.

    Article  CAS  Google Scholar 

  4. Blint, R.J. (1996) Copper coordination in zeolite-supported lean NOX Catalysts, J. Phys. Chem. 100, 19518–19524.

    Article  CAS  Google Scholar 

  5. Trout, B. L., Chakraborty, A.K., and Bell, A. T. (1996) Local spin density functional theory study of copper ion-exchanged ZSM-5, J. Phys. Chem. 100, 4173–4179.

    Article  CAS  Google Scholar 

  6. Teraishi, K., Ishida, M., Irisawa, J., Kume, M., Takahashi, Y., Nakano, T., Nakamura, H., and Miyamoto, A. (1997) Active site structure of Cu/ZSM-5: computational study, J. Phys. Chem. B, 101, 8079–8089.

    Article  CAS  Google Scholar 

  7. Zhanpeisov, N. U., Nakatsuji, H., Hada, M., Nakai, H., and Anpo (1996) CO and NO adsorption on copper-containing zeolite. A theoretical ab initio study, Catal. Letters 42, 173–176.

    Article  CAS  Google Scholar 

  8. Sayle, D. C., Catlow, C. R. A., Gale, J. D., Perrin, M.A., and Nortier, P. (1997) Computer modeling of the active-site configurations within the NO decomposition catalyst Cu-ZSM-5, J. Phys. Chem. A 101, 3331–3337.

    Article  CAS  Google Scholar 

  9. Rodriguez-Santiago, L., Sierka, M., Branchadell, V., Sodupe, M., and Sauer, J. (1998) Coordination of Cu+ ions to zeolite framework strongly enhances their ability to bind NO2. An ab initio density functional study, J. Am. Chem. Soc. 120, 1545–1551.

    Article  CAS  Google Scholar 

  10. Nachtigallova, D., Nachtigall, P., Sierka, M., and Sauer, J. (1999) Coordiantion and siting of Cu+ ions in ZSM-5: A combined quantum mechanics/interatomic potential function study, Phys. Chem. Chem. Phys. 1, 2019–2026.

    Article  CAS  Google Scholar 

  11. Nachtigall, P., Nachtigallova, D., and Sauer, J. (2000) Coordination change of Cu+ sites in ZSM-5 on excitation in the triplet state: understanding of the photoluminescence spectra, J. Phys. Chem. B 104, 1738–1745.

    Article  CAS  Google Scholar 

  12. Eichler, U., Kölmel, C. K., and Sauer, J. (1997) Combining ab initio techniques with analytical potential functions for structure predictions of large systems: Method and application to crystalline silica polymorphs, J. Comput. Chem. 18, 463–477.

    Article  CAS  Google Scholar 

  13. Sierka, M. and Sauer J.(2000) Finding transition structures in extended systems: A strategy based on a combined quantum mechanics-empirical valence bond approach, J. Chem. Phys. 112, 6983–6996.

    Article  CAS  Google Scholar 

  14. Dirac, P.A.M. (1930) Note on exchange phenomena in the Thomas atom, Proc. Cambridge Phil. Soc. 26, 376–385.

    Article  CAS  Google Scholar 

  15. Vosko, S. H., Wilk, L., and Nusair, M. (1980) Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis, Can. J. Phys. 58, 1200–1211.

    Article  CAS  Google Scholar 

  16. Parr, R.G. and Yang, W. (1989) Density-Functional Theory of Atoms and Molecules, Oxford University Press, Oxford.

    Google Scholar 

  17. Lee, C., Yang, W., and Parr, R. G. (1988) Development of the Colle-Salvetti correlation energy formula into a functional of the electron density, Phys. Rev. B 37, 785–789.

    Article  CAS  Google Scholar 

  18. Becke, A.D. (1993) A new mixing of Hartree-Fock and local density-functional theories, J. Chem. Phys. 98, 1372–1377.

    Article  CAS  Google Scholar 

  19. Nachtigallova, D., Davidova, M., and Nachtigall, P. (1998) Reliability of DFT methods for description of Cu sites and their interaction with NO in zeolites, Collect. Czech. Chem. Commun. 63, 1202–1212.

    Article  Google Scholar 

  20. Hass, K. C. and Schneider, F. (1996) Reliability of Small Cluster Models for Cu-Exchanged Zeolites, J. Phys. Chem., 100, 9292–9301.

    Article  CAS  Google Scholar 

  21. Delabie, A., Pierloot, K., Groothaert, M. H., Weckhuysen, B.M., and Schoonheydt, R. A. (2000) Study of the coordination of Cu2+ in zeolite Y: Interaction with water and ammonia, Microporous and Mesop. Materials 37, 209–222.

    Article  CAS  Google Scholar 

  22. Yokomichi, Y., Yamabe, T., Ohtsuka, H., and Kakumoto, T. (1996) Theoretical study of NO decomposition on Cu-ZSM-5 catalyst models using the density functional method, J. Phys. Chem., 100, 14424–14429.

    Article  CAS  Google Scholar 

  23. Broclawik, E., Datka, J., Gill, B, and Kozyra, P. (2000) T-O-T skeletal vibration in CuZSM-5 zeolite: IR study and quantum chemical modeling, Phys. Chem. Chem. Phys., 2, 401–405.

    Article  CAS  Google Scholar 

  24. Nachtigallova, D., Nachtigall, P., and Sauer, J. (2000) Coordination of Cu+ and Cu2+ ions in ZSM-5 in the vicinity of two framework Al atoms, Phys. Chem. Chem. Phys, submitted.

    Google Scholar 

  25. Nachtigall, P., Davidova, M., and Nachtigallova, D.(2000) Computational study of interaction of Cu+ with Ferrierite: structure, coordination, and photoluminescence spectra, J. Phys. Chem. B, accepted

    Google Scholar 

  26. Schafer, A., Horn, H., and Ahlrichs, R. (1992) Fully optimized contracted gaussian-basis sets for atoms Li to Kr, J. Chem. Phys., 97, 2571–2577.

    Article  Google Scholar 

  27. Texter, J., Strome, D. H., Herman, R. G., and Klier, K. (1977) Chemical and spectroscopic properties of copper containing zeolites, J. Phys. Chem., 81, 333–338.

    Article  CAS  Google Scholar 

  28. Lamberti, C., Bordiga, S., Salvalaggio, M., Spoto, G.; Zecchina, A., Geobaldo, F., Vlaic, G., Bellatreccia, M. (1997) XAFS, IR, and UV-vis study of the Cu-I environment in Cu-I-ZSM-5, J. Phys. Chem. B, 101, 344–360.

    Article  CAS  Google Scholar 

  29. Dedecek, J. and Wichterlova, B. (1999) Geometry of the Cu+ 540 nm luminescence centers in zeolites, Phys. Chem. Chem. Phys., 1, 629–637.

    Article  CAS  Google Scholar 

  30. Schneider, W.F. and Hass, K. C. (1998) Density functional theory study of transformations of nitrogen oxides catalyzed by Cu-exchanged zeolites, J. Phys. Chem. B, 102, 3692–3705.

    Article  CAS  Google Scholar 

  31. Schneider, W. F., Hass, K. C., Ramprasad, R., and Adams, J. B. (1996) First-principles analysis of elementary steps in the catalytic decomposition of NO by Cu-exchanged zeolites, J. Phys. Chem. B, 101, 4353–4357.

    Article  Google Scholar 

  32. Tajima, N., Hashimoto, M., Toyama, F., El-Nahas, A.M., and Hirao, K. (1999) A theoretical study on the catalysis of Cu-exchanged zeolite for the decomposition of nitric oxide, Phys. Chem. Chem. Phys. 1, 3823–3830.

    Article  CAS  Google Scholar 

  33. Trout, B. L, Chakraborty, A.K., and Bell, A. T. (1996) Analysis of the thermochemistry of NOX decomposition over CuZSM-5 based on quantum chemical and statistical mechanical calculations, J. Phys. Chem., 100, 17582–17592.

    Article  CAS  Google Scholar 

  34. Nachtigall, P. and Sauer, J. (2000) Interaction of NO with Cu+ ions in ZSM-5: A combined quantum mechanics/interatomic potential function study, In preparation.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sauer, J., Nachtigallova, D., Nachtigall, P. (2001). Ab Initio Simulation of Cu-Species in Zeolites: Siting, Coordination, UV-Vis Spectra and Reactivity. In: Centi, G., Wichterlová, B., Bell, A.T. (eds) Catalysis by Unique Metal Ion Structures in Solid Matrices. NATO Science Series, vol 13. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0782-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0782-5_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6875-5

  • Online ISBN: 978-94-010-0782-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics