Skip to main content

Local Site Deformations in Zeolites by the Coordination of Cu(II)

  • Chapter
Catalysis by Unique Metal Ion Structures in Solid Matrices

Part of the book series: NATO Science Series ((NAII,volume 13))

Abstract

The electronic and ESR spectra of Cu(II)-exchanged zeolites were interpreted by means of ab initio calculations. The Cu(II) coordination in the crystal sites was studied by partial geometry optimizations of Cu(II) clusters using DFT. The corresponding Cu(II) ligand field spectrum and g-factors were calculated using multiconfigurational perturbation theory (CASPT2), and compared with experiment. It was shown that Cu(II) induces strong lattice deformations in the cation sites to achieve a four-fold planar coordination. The Cu(II) spectroscopic features are believed to be influenced by both the geometry and the Si/A1 distribution of the cation site.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gallezot, P., Ben Taarit, Y. and Imelik, B. (1972) X-Ray Diffraction Study of Cupric Ion Migrations in Two Y-Type Zeolites Containing Adsorbed Reagents, J. Catal. 26, 295–302.

    Article  CAS  Google Scholar 

  2. Lee, H.S. and Seff, K. (1981) Redox Reactions of Copper in Zeolite A. Four Crystal Structures of Vacuum-Desolvated Copper-Exchanged Zeolite A, Cu8-A, J. Phys. Chem. 85, 397–405.

    Article  CAS  Google Scholar 

  3. Maxwell, I.E. and de Boer, J.J. (1975) Crystal Structures of Hydrated and Dehydrated Divalent-Copper-Exchanged Faujasite, J. Phys. Chem. 79, 1874–1879.

    Article  CAS  Google Scholar 

  4. De Wilde, W., Schoonheydt, R.A. and Uytterhoeven, J.B. (1977) Optical Spectroscopy of Hydrated and Ammoniated Cu(II)-Exchanged Zeolites, Types X and Y, ACS Symp. Ser. 40, 132–143.

    Article  Google Scholar 

  5. Klier, K., Hutta, P.J. and Kellerman, R. (1977) Electronic Structure and Stability of Transition Metal Ions in Zeolites, ACS Symp. Ser. 40, 108–119.

    Article  CAS  Google Scholar 

  6. Strome, D.H. and Klier, K. (1980) The Effect of Oxygen of Photoluminescence and Resonance Energy Transfer in Copper (I) Y Zeolite, ACS Symp. Ser. 135, 155–176.

    Article  CAS  Google Scholar 

  7. Naccache, C. and Ben Taarit, Y. (1971) ESR Study of Copper(II) Ions in Y Zeolite: Effect of Water, Ammonia and Pyridine Adsorption, Chem. Phys. Lett 11, 11–15.

    Article  CAS  Google Scholar 

  8. Turkevich, J., Ono, Y. and Soria, J. (1972) Further Electron Spin Resonance Studies of Cu(II) in Linde Y Zeolite, J. Catal. 25, 44–54.

    Article  CAS  Google Scholar 

  9. Iwamoto, M., Furukawa, H., Mine, Y., Uemura, F., Mikuriya, S. and Kagawa, S. (1986) Copper(II) Ion-Exchanged ZSM-5 Zeolites as Highly Active Catalysts for Direct and Continuous Decomposition of Nitrogen Monoxide, J. Chem. Soc., Chem. Commun., 1272–1273.

    Google Scholar 

  10. Dedecek, J., Sobalík, Z., Tvaruzková, Z., Kaucky, D. and Wichterlová, B. (1995) Coordination of Cu Ions in High-Silica Zeolite Matrices. Cu+ Photoluminescence, IR of NO Adsorbed on Cu2+, and Cu2+ ESR Study, J. Phys. Chem. 99, 16327–16337.

    Article  CAS  Google Scholar 

  11. Dedecek, J. and Wichterlová, B. (1994) Siting and Redox Behaviour of Cu Ions in CuH-ZSM-5 Zeolites. Cu+ Photoluminescence Study, J. Phys. Chem. 98, 5721–5727.

    Article  CAS  Google Scholar 

  12. Wichterlová, B., Dedecek, J., Sobalík, Z., Vondrová, A. and Klier, K. (1997) On the Cu Site in ZSM-5 Active in Decomposition of NO: Luminescence, FTIR Study, and Redox Properties, J. Catal. 169, 194–202.

    Article  Google Scholar 

  13. Dedecek, J. and Wichterlová, B. (1999) Geometry of the Cu+ 540 nm luminescence centres in zeolites, Phys. Chem. Chem. Phys. 1, 629–637.

    Article  CAS  Google Scholar 

  14. Packet, D. (1987) Coordination of Cu 2+ on the Surface of Zeolites, Ph.D. Thesis n° 151, Faculty of Agronomy, K.U.Leuven.

    Google Scholar 

  15. Packet, D. and Schoonheydt, R.A. (1988) Coordination of Cu2+ to Oxygen Six-Rings of Zeolites, ACS Symp. Ser. 368, 203–219.

    Article  CAS  Google Scholar 

  16. Schoonheydt, R.A. (1993) Transition Metal Ions in Zeolites: Siting and Energetics of Cu2+, Catal. Rev.-Sci. Eng. 35(1), 129–168.

    Google Scholar 

  17. De Tavernier, S. and Schoonheydt, R.A. (1991) Coordination of Cu2+ in synthetic mordenites, Zeolites 11, 155–163.

    Article  Google Scholar 

  18. Sobalík, Z., Dedecek, J., Ikonnikov, I. and Wichterlová, B. (1998) State and coordination of metal ions in high silica zeolites. Incorporation, development and rearrangement during preparation and catalysis, Micropor. Mesopor. Mater. 21, 525–532.

    Article  Google Scholar 

  19. Mortier, W.J., Pluth, J.J. and Smith, J.V.(1975) Positions of cations and molecules in zeolites with the mordenite-type framework. I. Dehydrated Ca-exchanged ptilolite, Mat. Res. Bull. 10, 1037–1046.

    Article  CAS  Google Scholar 

  20. Olson, D.H., Kokotailo, G.T., Lawton, S.L. and Meier, W.M. (1981) Crystal Structure and Structure-Related Properties of ZSM-5, J. Phys. Chem. 85, 2238–2243.

    Article  CAS  Google Scholar 

  21. Ahlrichs, R., Bär, M., Baron, H.P., Bauernschmitt, R., Böcker, S., Ehrig, M., Eichkorn, K., Elliott, S., Haase, F., Häser, M., Horn, H., Huber, C., Kölmel, C., Kollwitz, M., Ochsenfeld, C., Öhm, H., Schäfer, A., Schneider, U., Treutler, O., von Arnim, M., Weigend, F., Weis, P. and Weiss, H. (1997) Turbomole 4.4, University of Karlsruhe, Germany.

    Google Scholar 

  22. Schäfer, A., Horn, H. and Ahlrichs, R. (1992) Fully optimized contracted Gaussian basis sets for atoms Li to Kr, J. Chem. Phys. 97, 2571–2577.

    Article  Google Scholar 

  23. Andersson, K., Malmqvist, P.Å. and Roos, B.O. (1992) Second-order perturbation theory with a complete active space self-consistent field reference function, J. Chem. Phys. 96, 1218–1226.

    Article  CAS  Google Scholar 

  24. Andersson, K., Blomberg, M.R.A., Fülscher, M.P., Karlström, G., Lindh, R., Malmqvist, P.FÅ., Neogrády, P., Olsen, J., Roos, B.O., Sadlej, A.J., SchFütz, M., Seijo, L., Serrano-Andrés, L., Siegbahn, P.E.M. and Widmark, P.O. (1997) MOLCAS Version 4.1., University of Lund, Sweden.

    Google Scholar 

  25. Pierloot, K., Dumez, B., Widmark, P.O. and Roos, B.O. (1995) Density matrix averaged atomic natural orbital (ANO) basis sets for correlated molecular wave functions. IV. Medium size basis sets for the atoms H-Kr, Theor. Chim. Acta 90, 87–114.

    CAS  Google Scholar 

  26. Ribbing, C. and Daniel, C. (1994) Spin-orbit coupled excited states in transition metal complexes: A configuration interaction treatment of HCo(CO)4, J. Chem. Phys. 100, 6591–6596.

    Article  CAS  Google Scholar 

  27. Pierloot, K., Delabie, A., Verberckmoes, A.A. and Schoonheydt, R.A. (1998) The Interplay between DFT and conventional Quantum Chemistry: Coordination of Transition Metal Ions to Six-Rings in Zeolites, in P Geerlings, F. DeProft and W. Langenaeker (eds.), Density Functional Theory: A Bridge between Chemistry and Physics, VUB University Press, Brussels, pp. 169–188.

    Google Scholar 

  28. Delabie, A., Pierloot, K., Groothaert, M.H., Weckhuysen, B.M. and Schoonheydt, R.A. (2000) Study of the coordination of Cu2+ in zeolite Y: Interaction with water and ammonia, Micropor. Mesopor. Mater. 37, 209–222.

    Article  CAS  Google Scholar 

  29. Sass, C.E. and Kevan, L. (1989) Electron Spin-Echo and Electron Spin-Resonance Studies of Cupric Ion-Adsorbate Interactions in Hydrogen, Sodium, Potassium and Calcium Mordenite, J. Phys. Chem. 93, 4669–4674.

    Article  CAS  Google Scholar 

  30. Attfield, M.P., Weigel, S.J. and Cheetham, A.K. (1997) On the Nature of Nonframework Cations in a Zeolitic deNOx Catalyst: Cu-Mordenite, J. Catal. 170, 227–235.

    Article  CAS  Google Scholar 

  31. Delabie, A., Pierloot, K., Groothaert, M.H., Weckhuysen, B.M. and Schoonheydt, R.A. (in preparation) The siting of Cu(II) in mordenite: a combined spectroscopic-theoretical study.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Groothaert, M.H., Schoonheydt, R.A., Delabie, A., Pierloot, K. (2001). Local Site Deformations in Zeolites by the Coordination of Cu(II). In: Centi, G., Wichterlová, B., Bell, A.T. (eds) Catalysis by Unique Metal Ion Structures in Solid Matrices. NATO Science Series, vol 13. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0782-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0782-5_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6875-5

  • Online ISBN: 978-94-010-0782-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics