Skip to main content

Part of the book series: NATO Science Series ((NSSE,volume 372))

  • 353 Accesses

Abstract

The main current challenges in the synthesis of nanotubes are on the one hand the optimization of the production of existing structures - in particular ropes of single wall carbon nanotubes (SWNT) [1] - and on the other hand the exploration of novel structures, such as multi-element nanotubes, including carbon nanotubes filled with foreign materials. Controlling their fabrication requires first to be able to determine their structural and chemical characteristics in a quantitative way. Transmission electron microscopy (TEM) provides a unique way for studying the morphologies, the structure and the chemistry of nanotubular materials and has therefore highly contributed to the development of the research on this new kind of structures. Understanding the growth mechanisms is expected to help controlling and optimizing the production of nanotubes with definite geometry and chemistry. No coherent scheme on the growth mechanism has indeed clearly emerged yet, in particular for SWNT ropes, in spite of intensive experimental [2-6] and theoretical researches [7]. In situ studies have just started for different reaction chambers. They are very promising for determining characteristics of the temperature gradient and the time evolution of the matter aggregation after the initial vaporization of the different chemical species [8-10], but for the moment one has to rely on studies on the soot after the synthesis. Many useful information about the formation of nanotubes can again be deduced from TEM observations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Thess, A., et al (1996) Crystalline ropes of metallic carbon nanotubes, Science 273, 483–487.

    Article  CAS  Google Scholar 

  2. Journet, C., et al (1997) Large-scale production of single-walled carbon nanotubes by the electric-arc technique, Nature 388, 756–758.

    Article  CAS  Google Scholar 

  3. Journet C. (1998) La production de nanotubes de carbone, PHD thesis, University of Montpellier.

    Google Scholar 

  4. Yudasaka, M., et al (1997) Single-wall carbon nanotube formation by laser ablation using double-targets of carbon and metal, Chem. Phys. Lett., 278 102106.

    Article  Google Scholar 

  5. Yudasaka, M., et al (1998) Pressure-dependence of the structures of carbonaceous deposits formed by laser-ablation on targets composed of carbon, nickel, and cobalt, J. Phys. Chem. B 102 4892–4896.

    Article  CAS  Google Scholar 

  6. Yudasaka, M., et al (1998) Roles of laser light and heat in formation of single-wall carbon nanotubes by pulsed laser ablation of CxNiyCoy targets at high temperature, J. Phys. Chem. B 102 10201–10207.

    Article  CAS  Google Scholar 

  7. Yudasaka, M., et al (1999) Single-wall carbon nanotubes formed by a single laser-beam pulse, Chem. Phys. Lett. 299 91–96.

    Article  CAS  Google Scholar 

  8. Saito, Y., et al (1995) Extrusion of single-wall carbon nanotubes via formation of small particles condensed near an arc evaporation source, Chem. Phys. Lett. 236 419–426.

    Article  CAS  Google Scholar 

  9. Saito, Y., et al (1995) Single-layered carbon nanotubes synthesized by catalytic assistance of rare-earths in a carbon-arc, J. Phys. Chem. 99 16076–16079.

    Article  CAS  Google Scholar 

  10. Saito, Y., et al (1998) High yield of single-wall carbon nanotubes by arc discharge using Rh-Pt mixed catalysts, Chem. Phys. Lett. 294 593–598.

    Article  CAS  Google Scholar 

  11. Kataura, H., et al (1998) Formation of thin single-wall carbon nanotubes by laser vaporization of Rh/Pd-graphite composite rod, Jpn J. Appl. Phys. 37 L616–618.

    Article  CAS  Google Scholar 

  12. Seraphin, S., and Zhou, D. (1994) Single-walled carbon nanotubes produced at high-yield by mixed catalysts, Appl. Phys. Lett. 64 2087–2089.

    Article  CAS  Google Scholar 

  13. Zhou, D., et al (1994) Appl. Phys. Lett . 65 181.

    Google Scholar 

  14. For reviews see: Bernholc, J., et al (1998) Theory of growth and mechanical properties of nanotubes, Appl. Phys. A 67 39–46.

    Article  CAS  Google Scholar 

  15. Charlier, J.Ch., et al (1999) Microscopic growth mechanisms for carbon and boron-nitride nanotubes, Appl. Phys. A 68 267–273.

    Article  CAS  Google Scholar 

  16. Arepalli,S., and Scott, C. D. (1999) Spectral measurements in production of single-wall carbon nanotubes by laser ablation, Chem. Phys. Lett. 302 139–145.

    Article  Google Scholar 

  17. Arepalli, S., et al (2000) Diagnostics of laser-produced plume under carbon nanotube growth conditions, Appl. Phys. A 70 125–133.

    Article  CAS  Google Scholar 

  18. Kokai, F., et al (1999) Growth dynamics of single-wall carbon nanotubes synthesized by CO laser vaporization, J. Phys. Chem. B 103 4346–4351.

    Article  CAS  Google Scholar 

  19. Kataura, H., et al (2000), Carbon 38 1691–1687.

    Google Scholar 

  20. Ishigaki, T., Suzuki,S., Kataura, H., Krätschmer, W., and Achiba, Y. (2000) Characterization of fullerenes and carbon nanoparticles generated with a laser-furnace technique,Appl. Phys. A 70 121–124.

    Article  CAS  Google Scholar 

  21. Puretzki, A.A., Geohegan, D.B., Fan, X., and Pennycook, S.J. (2000) Dynamics of single-wall carbon nanotube synthesis by laser vaporization, Appl. Phys. A 70 153–160.

    Article  Google Scholar 

  22. Journet, C., and Bernier, P. (1998) Production of carbon nanotubes, Appl. Phys. A 67 1–9.

    Article  CAS  Google Scholar 

  23. Terrones, M., et al (1999) Nanotubes: a revolution in materials science and electronics, Topics in Current Chemistry 199 (Springer Verlag, Berlin), p.190.

    Google Scholar 

  24. Guerret-Piécourt, C., Le Bouar, Y., Loiseau, A., and Pascard, H. (1994) Relation between metal electronic structure and morphology of metal compounds inside carbon nanotubes, Nature 372 761–765.

    Article  Google Scholar 

  25. Loiseau, A., and Pascard, H. (1996) Synthesis of long carbon nanotubes filled with Se, S, Sb and Ge by the arc method, Chem. Phys. Lett. 256 246–252.

    Article  CAS  Google Scholar 

  26. Loiseau, A., et al (2000) Filling carbon nanotubes using an arc discharge, in Science and applications of nanotubes, D. Tománek and R. J. Enbody (Eds), Kluwer Academic Press, New York, pp. 1–16.

    Google Scholar 

  27. Lee, S.T., et al (1999) Oxide-assisted semiconductor nanowire growth, MRS Bulletin 24(8), 36–42.

    CAS  Google Scholar 

  28. Terrones, M., et al (1999) Advances in the creation of filled nanotubes and novel nanowires, MRS Bulletin 24(8), 43–49.

    CAS  Google Scholar 

  29. Ugarte, D., et al (1998) Filling carbon nanotubes, Appl. Phys. A 67 101–105.

    Article  CAS  Google Scholar 

  30. Suenaga, K., Colliex, C., Demoncy, N., Loiseau, A., Pascard, H., and Willaime, F. (1997) Synthesis of nanoparticles and nanotubes with well-separated layers of boron nitride and carbon, Science 278 653–655.

    Article  CAS  Google Scholar 

  31. Loiseau, A., Willaime, F., Demoncy, N., Hug, G., and Pascard, H. (1996) Boron nitride nanotubes with reduced numbers of layers synthesized by arc discharge, Phys. Rev. Lett. 76 4737–4740.

    Article  CAS  Google Scholar 

  32. For a review see Loiseau, A., et al (1998) Boron nitride nanotubes, Carbon 36 743–752.

    Article  Google Scholar 

  33. Stephan, O., et al (1994) Doping graphitic and carbon nanotubes structures with boron and nitrogen, Science 266 1683–1685;

    Article  CAS  Google Scholar 

  34. Z. Weng-Sieh et al (1995) Synthesis of B C NZ Nanotubes, Phys. Rev. B 51 11229–11232.

    Article  CAS  Google Scholar 

  35. Terrones, M., et al (1996) Pyroycally grown BXCYNZ nanomaterials - nanofibres and nanotubes, Chem.Phys. Lett. 257 576–582.

    Article  CAS  Google Scholar 

  36. Redlich, Ph., et al (1996) B-C-N nanotubes and boron doping of carbon Nanotubes, Chem. Phys. Lett. 260 465–470.

    Article  CAS  Google Scholar 

  37. Tencé, M., Quartuccio, M., and Colliex, C. (1995) PEELS compositional profiling and mapping at nanometer spatial-resolution, Ultramicroscopy 58 4254.

    Article  Google Scholar 

  38. Audier, M., Oberlin, A., and Coulon, M.J. (1981) Crystallographic orientations of catalytic particles in filamentous carbon: case of simple conical particles, J. of Cryst. Growth 55 549–556.

    Article  CAS  Google Scholar 

  39. Baker, R.T.K., Barber, M.A., Harris, P.S., Feates, F.S., and Waite, R.J. (1972) Nucleation and growth of carbon deposit from the nickel catalyzed decomposition of acetylene, J. Catal. 26 51–62.

    Article  CAS  Google Scholar 

  40. Demoncy, N., Stéphan, O., Brun, N., Colliex, C., Loiseau, A., Pascard, H. (1998) Filling carbon nanotubes with metals by the arc-discharge method: the key role of sulfur, Eur. Phys. J. B 4 147–157.

    Article  CAS  Google Scholar 

  41. Tibbetts, G. (1984) Why are carbon filaments tubular?, J. Cryst. Growth 66 632638.

    Article  Google Scholar 

  42. Kumikov, V.K and Khokonov, Kh. B. (1983) J. Appl. Phys. 54 1346.

    Google Scholar 

  43. Ip, S.W., and Toguri, J.M. (1993) Surface and interfacial-tension of the Ni-Fe-S, Ni-Cu-S, and fayalite slag systems, Metallurgical Transactions B 24 657–668.

    Article  Google Scholar 

  44. Dujardin, E., Ebbesen, T.W., Hiura, H., and Tanigaki, K. (1994) Capillarity and wetting of carbon nanotubes, Science 265 1850–1852.

    Article  CAS  Google Scholar 

  45. Ugarte, D., Châtelain, A., and de Heer, W.A. (1996) Nanocapillarity and chemistry in carbon nanotubes, Science 274 1897–1899.

    Article  CAS  Google Scholar 

  46. Oberlin, A. (1984) Carbonization and graphitization, Carbon 22 521–541; Bourrat, X., Oberlin, A., Escalier, J.C. (1987) Fuel 542 521.

    Google Scholar 

  47. Massalski, T. B. (1990) Binary Alloy Phase Diagrams, ASM International.

    Google Scholar 

  48. Dai, J.Y., Lauerhaas, J.M., Setlur, A.A., Chang, R.P.H. (1996) Synthesis of carbon-encapsulated nanowires using polycyclic aromatic hydrocarbon precursors, Chem. Phys. Lett. 258 547–53.

    Article  CAS  Google Scholar 

  49. Suenaga, K., Willaime, F., Loiseau, A., and Colliex, C. (1999) Organisation of carbon and boron nitride layers in mixed nanoparticles and nanotubes synthesised by arc discharge, Appl. Phys. A 68 301–308.

    Article  CAS  Google Scholar 

  50. Kasper, B. (1996) PhD thesis, Stuttgart University.

    Google Scholar 

  51. Schabel, M.C., and Martins, J.L. (1992) Energetics of interplanar binding in graphite, Phys. Rev. B 46 7185–7188.

    Article  CAS  Google Scholar 

  52. Thess, A., et al (1996) Crystalline ropes of metallic carbon nanotubes, Science 273 483–487.

    Article  CAS  Google Scholar 

  53. Young Hee, L., Seong Gon, K., Tomanek, D. (1997) Catalytic growth of single-wall carbon nanotubes: An ab initio study Phys. Rev. Lett. 78 2393–2396.

    Article  Google Scholar 

  54. Journet, C., et al (1997) Large-scale production of single-walled carbon nanotubes by the electric-arc technique, Nature 388 756–758.

    Article  CAS  Google Scholar 

  55. Kataura, H. et al (2000), A workshop on nanotubes and fullerenes chemistry, Elsevier Science Ltd, Oxford.

    Google Scholar 

  56. Guo, T., et al (1995) Self-assembly of tubular fullerenes, J. Phys. Chem. 99 10694–10697.

    Article  CAS  Google Scholar 

  57. Guo, T., et al (1995) Catalytic growth of single-walled nanotubes by laser vaporization, Chem. Phys Lett. 243 49–54.

    Article  CAS  Google Scholar 

  58. Saito, Y., et al. (1994) Single-wall carbon nanotubes growing radially fron Ni fine particles formed by arc evaporation, Jpn. J. Appl. Phys. 33 L526–L529.

    Article  CAS  Google Scholar 

  59. Saito, Y. (1995) Nanoparticles and filled nanocapsules, Carbon 33 979–988.

    Article  CAS  Google Scholar 

  60. Maiti, A., Brabec, C.J., and Bernholc, J. (1997) Kinetics of metal-catalyzed growth of single-walled carbon nanotubes, Phys. Rev B 55 R6097–6100.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Loiseau, A., Willaime, F. (2001). Growth of Nanotubes: The Combined Tem and Phase-Diagram Approach. In: Biró, L.P., Bernardo, C.A., Tibbetts, G.G., Lambin, P. (eds) Carbon Filaments and Nanotubes: Common Origins, Differing Applications?. NATO Science Series, vol 372. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0777-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0777-1_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6908-0

  • Online ISBN: 978-94-010-0777-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics