Carbon Nanotubes Formation in the Arc Discharge Process

  • A. Fonseca
  • J. B. Nagy
Chapter
Part of the NATO Science Series book series (NSSE, volume 372)

Abstract

The different aspects of the arc discharge production of carbon nanotubes are reviewed. Most of the attention is focussed on the production of single walled nanotubes. The purification techniques applied to nanotubes are also briefly described.

Keywords

Surfactant Nickel Graphite Carbide Cobalt 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bacon, R. (1960) Growth, structure and properties of graphite whiskers,J. Appl.Phys. 31, 284–290.CrossRefGoogle Scholar
  2. 2.
    Krätsmer, W., Lamb, L. D., Fortiropoulos, K., Huffman, D. R. (1990) Solid Cho: a new form of carbon,Nature 347, 354–358.CrossRefGoogle Scholar
  3. 3.
    Iijima, S. (1991) Helical microtubules of graphitic carbon,Nature 354, 56–58.CrossRefGoogle Scholar
  4. 4.
    Ebbesen, T. W., Ajayan, P. M. (1992) Large-scale synthesis of carbon nanotubes,Nature 358, 220–220.CrossRefGoogle Scholar
  5. 5.
    Iijima, S., Ichihashi, T. (1993) Single-shell carbon nanotubes of 1 nm diameter,Nature 363, 603–605.CrossRefGoogle Scholar
  6. 6.
    Bethune, D. S., Kiang, C. H., de Vries, M. S., Gorman, G., Savoy, R., Vazquez, J., Beyers, R. (1993) Cobalt-catalyzed growth of carbon nanotubes with singleatomic-layer walls,Nature 363, 605–606.CrossRefGoogle Scholar
  7. 7.
    Journet, C. (1998) La production de nanotubes de carbone,Ph D thesis, Université de Montpellier II Sciences et Techniques du Languedoc, Montpellier, France.Google Scholar
  8. 8.
    Cheng, H. M., Li, F., Su, G., Pan, H. Y., He, L. L., Sun, X., Dresselhaus, M. S., (1998) Large-scale and low-cost synthesis of single-walled carbon nanotubes by catalytic pyrolysis of hydrocarbons,Appl. Phys. Letters 72, 3282–3284.CrossRefGoogle Scholar
  9. 9.
    Rice group (1999)Chem. and Eng. News 77, 31.Google Scholar
  10. 10.
    Journet, C., Maser, W. K., Bernier, P., Loiseau, A., Lamy De la Chapelle, M., Lefrant, S., Deniard, P., Lee, R., Fisher, J. E. (1997) Large-scale production of single-walled carbon nanotubes by the electric arc technique,Nature 388, 756–758.CrossRefGoogle Scholar
  11. 11.
    Colomer, J.-F., Stephan, C., Fefrant, S., Van Tendeloo, G., Willems, I., Konya, Z., Fonseca, A., Laurent, Ch., B.Nagy, J. (2000) Large-scale synthesis of single-wall carbon nanotubes by catalytic chemical vapor deposition (CCVD) method,Chem. Phys. Lett. 317,83–89.CrossRefGoogle Scholar
  12. 12.
    Rinzler, A. G., Liu, J., Dai, H., Nikolaev, P., Huffman, C. B., Rodrigues-Macias, F. J., Boul, P. J., Lu, A. H., Heymann, D., Colbert, D. T., Lee, R. S., Fischer, J. E., Rao, A. M., Eklund, P. C., Smalley, R. E. (1998) Large-scale purification of single-wall carbon nanotubes: Process, product, and characterization,Appl. Phys. A 67, 29–37.Google Scholar
  13. 13.
    Liu, J., Rinzler, A. G., Dai, H., Hafner, J. H., Brandley, R. K., Boul, P. J., Lu, A., Iverson, T., Shelimov, K., Huffman, C. B., Rodriguez-Macias, F., Shon, Y.-S., Lee, T. R., Colbert, D. T., Smalley, R. E. (1998) Fullerene pipes,Science 280, 1253–1256.CrossRefGoogle Scholar
  14. 14.
    Saito, R., Fujita, M., Dresselhaus, G., Dresselhaus, M. S. (1992) Electronic structure of graphene tubules based on C60,Phys. Rev. B 46, 1804–1811.CrossRefGoogle Scholar
  15. 15.
    Tans, S. J., Devoret, M. H., Dai, H., Thess, A., Smalley, R. E., Geerligs, L. J., Dekker, C. (1997) Individual single-wall carbon nanotubes as quantum wires,Nature 386, 474–477.CrossRefGoogle Scholar
  16. 16.
    Ando, Y., Zhao, X., Kataura, H., Achiba, Y., Kaneto, K., Tsuruta, M., Uemura, S., Iijima, S. (2000) Multiwalled carbon nanotubes prepared by hydrogen arc,Diamond and Related Materials 9, 847–851.CrossRefGoogle Scholar
  17. 17.
    Ando, Y., Iijima, S. (1993) Preparation of carbon nanotubes by arc-discharge evaporation,Jpn. J. Appl. Phys. 32, L107–109.Google Scholar
  18. 18.
    Ando, Y. (1994) Preparation of carbon nanotubes,Full. Sci. Technol. 2, 173–180.CrossRefGoogle Scholar
  19. 19.
    Zhao, X., Wang, M., Ohkohchi, M., Ando, Y. (1996) Morphology of carbon nanotubes prepared by carbon arc,Jpn. J. Appl. Phys. 35, 4451–4456.CrossRefGoogle Scholar
  20. 20.
    Blank, V. D., Gorlova, I. G., Hutchison, J. L., Kiselev, N. A., Ormont, A. B., Polyakov, E. V., Sloan, J., Zakharov, D. N., Zybtsev, S. G. (2000) The structure of nanotubes fabricated by carbon evaporation at high gas pressure,Carbon 38, 1217–1240.Google Scholar
  21. 21.
    Wang, M., Zhao, X., Ohkohchi, M., Ando, Y. (1996) Carbon nanotubes grown on the surface of cathode deposit by arc discharge,Full. Sci. Technol. 4, 1027–1039.Google Scholar
  22. 22.
    Zhao, X., Ohkohchi, M., Whang, M., Iijima, S., Ichihashi, T., Ando, Y. (1997) Preparation of high-grade carbon nanotubes by hydrogen arc discharge,Carbon 35, 775–781.CrossRefGoogle Scholar
  23. 23.
    Ando, Y., Zhao, X., Ohkohchi, M. (1997) Production of petal-like graphite sheets by hydrogen arc discharge,Carbon 35, 153–158.CrossRefGoogle Scholar
  24. 24.
    Duesberg, G. S., Muster, J., Krstic, V., Burghard, M., Roth, S. (1998) Chromatographic size separation of single-wall carbon nanotubes,Appl. Phys. A 67,117–119.Google Scholar
  25. 25.
    Ebbesen, T. W. (1994) Carbon nanotubes,Annu. Rev. Mater. Sci. 24, 235–264.CrossRefGoogle Scholar
  26. 26.
    Maser, W. K., Bernier, P., Lambert, J. M., Stephan, O., Ajayan, P. M., Colliex, C., Brotons, V., Planeix, J. M., Coq, B., Molinie, P., Lefrant, S. (1996) Elaboration and characterization of various carbon nanostructures,Synth. Metals 81, 243–250.CrossRefGoogle Scholar
  27. 27.
    Kiang, C. H., Goddard III, W. A., Beyers, R., Bethune, D. S. (1995) Carbon nanotubes with single-layer walls,Carbon 33, 903–914.CrossRefGoogle Scholar
  28. 28.
    Ajayan, P. M., Lambert, J. M., Bernier, P., Barbetette, L., Colliex, C., Planeix, J. M. (1993) Growth morphologies during cobalt catalysed single-shell carbon nanotubes,Chem. Phys. Lett. 215, 509–517.CrossRefGoogle Scholar
  29. 29.
    Lambert, J. M., Ajayan, P. M., Bernier, P. (1995) Synthesis of single and multi-shell carbon nanotubes,Synth. Metals 70, 1475–1476.CrossRefGoogle Scholar
  30. 30.
    Kiang, C. H., Goddard III, W. A., Beyers, R., Salem, J. R., Bethune, D. S. (1994) Catalytic synthesis of single-layer carbon nanotubes with a wide range of diameters,J. Phys. Chem. 98, 6612–6618.CrossRefGoogle Scholar
  31. 31.
    Seraphin, S., Zhou, D. (1994) Single-walled carbon nanotubes produced at high yield by mixed catalysts,Appl. Phys. Lett. 64, 2087–2089.CrossRefGoogle Scholar
  32. 32.
    Lambert, J. M., Ajayan, P. M., Bernier, P., Planeix, J. M., Brotons, V., Coq, B., Castaing, J. (1994) Improving conditions towards isolating single-shell carbon nanotubes,Chem. Phys. Lett. 226, 364–371.CrossRefGoogle Scholar
  33. 33.
    Lin, X., Wang, K., Dravid, V. P., Chang, R. P. H., Ketterson, J. B. (1994) Large scale synthesis of single-shell carbon nanotubes,Appl. Phys. Lett. 64, 181–183.CrossRefGoogle Scholar
  34. 34.
    Ajayan, P. M., Colliex, C., Lambert, J. M., Bernier, P., Barbedette, L., Tencé, M., Stephan, O. (1994) Growth of manganese filled carbon nanofibers in the vapor phase,Phys. Rev. Lett. 72, 1722–1725.CrossRefGoogle Scholar
  35. 35.
    Seraphin, S., Zhou, D., Jiao, J., Minke, M. A., Wang, S., Yadav, T., Withers, J. C. (1994) Catalytic role of nickel, palladium, and platinum in the formation of carbon nanoclustersChem. Phys. Lett. 217, 191–198.CrossRefGoogle Scholar
  36. 36.
    Saito, Y., Kawabatta, K., Okuda, M. (1995) Single-layered carbon nanotubes synthesized by catalytic assistance of rare-earths in a carbon arc,J. Phys. Chem. 99, 16076–16079.CrossRefGoogle Scholar
  37. 37.
    Loiseau, A., Pascard, H. (1996) Synthesis of long carbon nanotubes filled with Se, S, Sb and Ge by the arc method,Chem. Phys. Lett. 256, 246–252.CrossRefGoogle Scholar
  38. 38.
    Guerret-Plécourt, C., Le Bouar, Y., Loiseau, A., Pascard, H. (1994) Relation between metal electronic structure and morphology of metal compounds inside carbon nanotubes,Nature 372, 761–765.CrossRefGoogle Scholar
  39. 39.
    Ata, M., Hudson, A. J., Yamaura, K., Kurihara, K. (1995) Carbon nanotubes filled with gadolinium and hafnium carbides,J. Appl. Phys. 34, 4207–4212.Google Scholar
  40. 40.
    Kiang, C. H., Goddard III, W. A., Beyers, R., Salem, J. R., Bethune, D. S. (1996) Catalytic effects of heavy metals on the growth of carbon nanotubes and nanoparticles,J. Phys. Chem. Solids 57, 35–39.Google Scholar
  41. 41.
    Ruoff, R. S., Lorents, D. C., Chan, B, Malhotra, R., Subramoney, S (1993) Single crystal metals encapsulated in carbon nanoparticles,Science 259, 346–348.Google Scholar
  42. 42.
    Zhang, Y., Iijima, S., Shi, Z., Gu, Z. (1999) Defects in arc-discharge-produced single-walled carbon nanotubes,Phil. Mag. Lett. 79, 473–479.CrossRefGoogle Scholar
  43. 43.
    Sloan, J., Wright, D. M., Woo, H. G., Bailey, S., Brown, G., York, A. P. E., Coleman, K. S., Hutchison, J. L., Green, M. L. H. (1999) Capillarity and silver nanowire formation observed in single walled carbon nanotubes,Chem. Commun. No 8, 699–700.CrossRefGoogle Scholar
  44. 44.
    Sloan, J., Dunin-Borkowski, R. E., Hutchison, J. L., Coleman, K. S., Williams, V. C., Claridge, J. B., York, A. P. E., Xu, C., Bailey, S. R., Brown, Friedrichs, G. S., Green, M. L. H. (2000) The size distribution, imaging and obstructing properties of C60 and higher fullerenes formed within arc-grown single walled carbon nanotubes,Chem. Phys. Lett. 316, 191–198.CrossRefGoogle Scholar
  45. 45.
    Oberlin, A. (1984) Carbonization and graphitizationCarbon 22, 521–541.CrossRefGoogle Scholar
  46. 46.
    Nikolaev, P., Thess, A., Rinzler, A. G., Colbert, D. T., Smalley, R. E. (1997) Diameter doubling of single-wall carbon nanotubesChem Phys. Lett. 266, 422–426.Google Scholar
  47. 47.
    Metenier, K. (1999) Intercalation et stockage electrochimique dans les nanotubes de carbone. Evolution thermique des nanotubes monoparoi,Ph D thesis, Université d’Orléans, Orléans, France.Google Scholar
  48. 48.
    Ebbesen, T. W., Ajayan, P. M., Hiura, H., Tanigaki, K. (1994) Purification of nanotubes,Nature 367, 519.CrossRefGoogle Scholar
  49. 49.
    Ajayan, P. M., Ebbesen, T. W., Ichihashi, T., Iijima, S., Tanigaki, K., Hiura, H. (1993) Opening carbon nanotubes with oxygen and implications for filling,Nature 362, 522–525.CrossRefGoogle Scholar
  50. 50.
    Ando, Y., Zhao, X., Ohkohchi, M. (1998) Sponge of purified carbon nanotubesJpn. J. Appl. Phys. 37, L61.CrossRefGoogle Scholar
  51. 51.
    Satishkumar, B. C., Govindaraj, A., Mofokeng, J., Subbanna, G. N., Rao, C. N. R. (1996) Novel experiments with carbon nanotubes: opening, filling, closing and functionalising nanotubes,J. Phys. B: At. Mol. Opt. Phys. 29, 4925–4934.CrossRefGoogle Scholar
  52. 52.
    Abatemarco, T., Stickel, J., Belfort, J., Franck, B. P., Ajayan, P. M., Belfort, G., (1999) Fractionation of multiwalled carbon nanotubes by cascade membrane microfiltration,J. Phys. Chem. B 103, 3534–3538.CrossRefGoogle Scholar
  53. 53.
    Bandow, S., Rao, A. M., Williams, K. A., Thess, A., Smalley, R. E., Eklund, P. C., (1997) Purification of single-wall carbon nanotubes by microfiltration,J. Phys. Chem. B 101, 8839–1842.CrossRefGoogle Scholar
  54. Duesberg, G. S., Burghard, M., Muster, J., Philip, G., Roth, S. (1998) Separation of carbon nanotubes by size exclusion chromatography,Chem. Commun. 435–436.Google Scholar
  55. 55.
    Dillon, A. C., Gennett, T., Jones, K. M., Alleman, J. L., Parilla, P. A., Heben, M. J. (1999) Simple and complete purification of single-walled carbon nanotube materials,Adv. Mater. 11, 1354–1358.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • A. Fonseca
    • 1
  • J. B. Nagy
    • 1
  1. 1.Laboratoire de Résonance Magnétique NucléaireFacultés Universitaires Notre-Dame de la PaixNamurBelgium

Personalised recommendations