Skip to main content

Part of the book series: NATO Science Series ((NSSE,volume 372))

Abstract

A brief overview will be given of the remarkable structural and electronic properties of carbon nanotubes, which are tiny structures of molecular dimensions in the form of hollow cylinders with about 20 carbon atoms around the circumference of the cylinders and microns in length. Unusual properties follow as a consequence of quantum mechanical phenomena associated with this one-dimensional system. The unique electronic properties of these carbon nanotubes are that they can be either semiconducting or metallic depending on their geometry. From this, stem other remarkable and unique properties, as observed in their vibrational spectra and in their strength and stiffness. Though less than a decade since their discovery, carbon nanotubes are already finding practical applications based on their unique properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dresselhaus, M. S., Dresselhaus, G., and Saito, R. (1995) Physics of carbon nanotubes,Carbon 33, 883–891.

    Google Scholar 

  2. Dresselhaus, M. S., Dresselhaus, G., and Saito, R. (1992) Carbon fibers based on C60 and their symmetryPhys. Rev. B45, 6234–6242.

    Article  CAS  Google Scholar 

  3. Saito, R., Dresselhaus, G., and Dresselhaus, M. S. (1998)Physical properties of carbon nanotubesImperial College Press, London.

    Book  Google Scholar 

  4. Saito, R., Fujita, M., Dresselhaus, G., and Dresselhaus M. S. (1992) Electronic structure of chiral graphene tubulesAppl. Phys. Lett.60, 2204–2206.

    Article  CAS  Google Scholar 

  5. lijima, S. and Ichihashi T. (1993) Single shell carbon nanotubes of 1-nm diameterNature (London)363, 603–605.

    Article  Google Scholar 

  6. Iijima, S. (1991) Helical microtubules of graphitic carbonNature (London)354, 56–58.

    Article  CAS  Google Scholar 

  7. Wallace, P. R. (1947) The band theory of graphitePhys. Rev. 71622–634.

    Article  CAS  Google Scholar 

  8. Dresselhaus, M. S. and Dresselhaus, G. (1981) Intercalation compounds of graphiteAdvances in Phys.30, 139–326.

    Article  CAS  Google Scholar 

  9. Saito, R., Fujita, M., Dresselhaus, G., and Dresselhaus,M. S. (1992) Electronic structures of carbon fibers based on CHPhys. Rev. B46, 1804–1811.

    Article  CAS  Google Scholar 

  10. Painter, G. S. and Ellis, D. E. (1970) Electronic band structure and optical properties of graphite from a variational approachPhys. Rev. B1, 4747–4752.

    Article  Google Scholar 

  11. Saito, R., Dresselhaus, G., and Dresselhaus, M. S. (2000) Trigonal warping effect of carbon nanotubesPhys. Rev. B61, 2981–2990.

    Article  CAS  Google Scholar 

  12. McClure, J. W. (1956) Diamagnetism of graphitePhys. Rev.104, 666–671.

    Article  CAS  Google Scholar 

  13. Mintmire, J. W., Dunlap, B. I., and White, C. T. (1992) Are fullerene tubules metallic?Phys. Rev. Lett.68, 631–634.

    Article  CAS  Google Scholar 

  14. llamada, T., Furuyama, M., Tomioka, T., and Endo M. (1992) Preferred orientation of pitch precursor fibers and carbon fibers prepared from isotropic pitchJ. Mater. Res.7, 1178–1188; ibid., 2612–2620.

    Google Scholar 

  15. Venkataraman, L. (1993)Calculation of the phonon modes in carbon nanotubesBachelor of Science Thesis, Department of Physics, MIT, Cambridge, MA.

    Google Scholar 

  16. Jishi, R. A., Venkataraman, L., Dresselhaus, M. S., and Dresselhaus, G. (1993), Phonon modes in carbon nanotubulesChem. Phys. Lett.209, 77–82.

    Article  CAS  Google Scholar 

  17. Jishi, R. A., Inomata, D., Nakao, K., Dresselhaus, M. S., and Dresselhaus, G. (1994) Electronic and lattice properties of carbon nanotubesJ. Phys. Soc. Jpn.63, 22522260.

    Google Scholar 

  18. llamada, N., Sawada, S., and Oshiyama, A. (1992) New one-dimensional conductors: graphitic microtubulesPhys. Rev. Lett.68, 1579–1581.

    Article  Google Scholar 

  19. Dresselhaus, M. S., Jishi, R. A., Dresselhaus, G., Inomata, D., Nakao, K., and Saito, R. (1994) Group theoretical concepts for carbon nanotubesMolecular Materials4, 27–40.

    CAS  Google Scholar 

  20. Dresselhaus,M.S.,Dresselhaus,G.,and Eklund,P.C.(1996)Science of fullerenes and carbon nanotubesAcademic Press, New York, N.Y.

    Google Scholar 

  21. Dresselhaus, M. S., Dresselhaus, G., Saito, R., and Eklund, P. C. (1992), Cho-Related balls and fibersElsevier Science Publishers, B.V., New York, Chapt. 18, pp. 387417.

    Google Scholar 

  22. Saito, R., Dresselhaus, G., and Dresselhaus, M. S. (1993) Electronic structure of double-layered graphene tubulesJ. Appl. Phys.73, 494–500.

    Article  CAS  Google Scholar 

  23. Charlier, J.-C. (1998) Theory of electronic structure of carbon nanotubes, in Delha¨¨s, P. and Ajayan, P. M. (eds.)Fullerenes and NanotubesVol. 2, Gordon and Breach, Paris, France.

    Google Scholar 

  24. Wildöer, J. W. G., Venema, L. C., Rinzler, A. G., Smalley, R. E., and Dekker, C. (1998) Electronic structure of carbon nanotubes investigated by scanning tunneling spectroscopyNature (London)391, 59–62.

    Article  Google Scholar 

  25. Odom, T. W., Huang, J. L., Kim, P., and Lieber, C. M. (1998) Atomic structure and electronic properties of single-walled carbon nanotubesNature (London)391, 62–64.

    Article  CAS  Google Scholar 

  26. Odom, T. W., Huang, J. L., Kim, P., Ouyang, M., and Lieber, C. M. (1998) STM and spectroscopy studies of single-walled carbon nanotubesJ. Mater. Res.13, 2380–2388.

    Article  CAS  Google Scholar 

  27. Odom, T. W., private communication.

    Google Scholar 

  28. Kim, P., Odom, T., Huang, J.-L., and Lieber, C. M. (1999) Electronic density of states of atomically resolved single-walled carbon nanotubes: Van Hove singularity and end statesPhys. Rev. Lett.82, 1225–1228.

    Article  CAS  Google Scholar 

  29. Kataura, H., Kumazawa, Y., Kojima, N., Maniwa, Y., Umezu, I., Masubuchi, S., Kazama, S., Zhao, X., Ando, Y., Ohtsuka, Y., Suzuki, S., and Achiba, Y. (1999) Optical absorption and resonant raman scattering of carbon nanotubes, in Kuzmany, H., Mehring, M., and Fink, J. (eds.)Electronic Properties of Novel Materials - Science and Technology of Molecular NanostructuresAIP Conf. Proc. 486, American Institute of Physics, Woodbury, N.Y., pp. 328–332.

    Google Scholar 

  30. Ajiki, H. and Ando, T. (1994) Aharonov-Bohm effect in carbon nanotubesPhysica B Condensed Matter 201, 349–352.

    Article  CAS  Google Scholar 

  31. Kazaoui, S., Minami, N., Jacquemin, R., Kataura, H., and Achiba, Y. (1999).Phys. Rev. B60,13339–13342.

    Google Scholar 

  32. Rao, A. M., Richter, E., Bandow, S., Chase, B., Eklund, P. C., Williams, K. W., Menon, M., Subbaswamy, K. R., Thess, A., Smalley, R. E., Dresselhaus, G., and Dresselhaus, M. S. (1997) Infrared and Raman spectroscopic studies of single-wall carbon nanotubesScience275, 187–191.

    Article  CAS  Google Scholar 

  33. Kasuya, A., Sasaki, Y., Saito, Y., Tohji, K., and Nishina, Y. (1997) Evidence for size-dependent discrete dispersions in single-wall nanotubesPhys. Rev. Lett.78, 4434–4437.

    Article  CAS  Google Scholar 

  34. Pimenta, M. A., Marucci, A., Brown, S. D. M., Matthews, M. J., Rao, A. M., Eklund, P. C., Smalley, R. E., Dresselhaus, G., and Dresselhaus, M. S. (1998) Resonant Raman effect in single-wall carbon nanotubesJ. Mater. Research13, 2396–2404.

    Article  CAS  Google Scholar 

  35. Pimenta, M. A., Marucci, A., Empedocles, S., Bawendi, M., Hanlon, E. B., Rao, A. M., Eklund, P. C., Smalley, R. E., Dresselhaus, G., and Dresselhaus, M. S. (1998) Raman modes of metallic carbon nanotubesPhys. Rev. B Rapid58, R16016–R16019.

    Article  CAS  Google Scholar 

  36. Alvarez, L., Righi, A., Guillard, T., Rols, S., Anglaret, E., Laplaze, D., and Sauvajol, J.-L. (2000) Resonant Raman study of the structure and electronic properties of SWNTsChem. Phys. Lett.316, 186–190.

    Article  CAS  Google Scholar 

  37. Mintmire, J. W. and White, C. T. (1998) Universal DOS in carbon nanotubesPhys. Rev. Lett.81, 2506–2509.

    Article  CAS  Google Scholar 

  38. White, C. T. and Todorov, T. N. (1998) Carbon nanotubes as long ballistic conductorsNature (London)393, 240–242.

    Article  CAS  Google Scholar 

  39. Kataura, H., Kumazawa, Y., Maniwa, Y., Umezu, I., Suzuki, S., Ohtsuka, Y., and Achiba, Y. (1999) Optical properties of single-wall carbon nanotubesSynthetic Metals103, 2555–2558.

    Article  CAS  Google Scholar 

  40. Dresselhaus, G., Pimenta, M. A., Saito, R., Charlier, J.-C., Brown, S. D. M., Corio, P., Marucci, A., and Dresselhaus, M. S. (2000) On the 7r-7r overlap energy in carbon nanotubes, in Tom¨¢nek, D. and Enbody, R. J. (eds.)Science and Applications of NanotubesKluwer Academic, New York, pp. 275–295.

    Google Scholar 

  41. Saito, R., private communication.

    Google Scholar 

  42. Wang, S. and Zhou, D. (1994) Microscopy of single layer carbon nanotubesChem. Phys. Lett.225, 165–169.

    Article  CAS  Google Scholar 

  43. Ge, M. and Sattler, K. (1993) STM and properties of fullerenes and carbon nanotubesScience260, 515–518.

    Article  CAS  Google Scholar 

  44. Dravid, V. P., Lin, X., Wang, Y., Wang, X. K., Yee, A., Ketterson, J. B., and Chang, R. P. H. (1993) Buckytubes and derivatives: Their growth and implications for buckyball formationScience259, 1601–1604.

    Article  CAS  Google Scholar 

  45. Amelinckx, S., Bernaerts, D., Zhang, X. B., Van Tendeloo, G., and Van Landuyt, J. (1995) A structure model and a growth mechanism for multishell carbon nanotubes prepared by the arc discharge methodScience267, 1334–1338.

    Article  CAS  Google Scholar 

  46. Zhang, Z. and Lieber, C. M. (1993) Nanotube structure and electronic properties probed by STMAppl. Phys. Lett.62, 2792–2794.

    Article  CAS  Google Scholar 

  47. Sattler, K. (1995) STM analysis of carbon nanotubes and nanoconesCarbon33, 915–920.

    Article  CAS  Google Scholar 

  48. Kataura, H. (unpublished).

    Google Scholar 

  49. Kataura, H., Y. Kumazawa, N. Kojima, Y. Maniwa, I. Umezu, S. Masubuchi, S. Kazama, X. Zhao, Y. Ando, Y. Ohtsuka, S. Suzuki, and Y. Achiba: 1999a, `Optical Absorption and Resonant Raman Scattering of Carbon Nanotubes’. In: H. Kuzmany, M. Mehring, and J. Fink (eds.):Proc. of the Int. Winter School on Electronic Properties of Novel Materials (IWEPNM’99).Woodbury, N.Y., American Institute of Physics. AIP conference proceedings (in press).

    Google Scholar 

  50. Saito, R. and Kataura, H. (2000), in Dresselhaus, M. S., Dresselhaus, G., and Avouris, P. (eds.)Carbon NanotubesSpringer-Verlag, Berlin, to be published.

    Google Scholar 

  51. Dresselhaus, M. S. and Eklund, P. C. (2000) Phonons in carbon nanotubesAdvances in Physicsin press.

    Google Scholar 

  52. Charlier, J.-C., private communication.

    Google Scholar 

  53. Rao, A. M., Jorio, A., Pimenta, M. A., Dantas, M. S. S., Saito, R., Dresselhaus, G., and Dresselhaus, M. S. (2000) Polarized Raman study of aligned multiwalled carbon nanotubesPhys. Rev. Lett.84, 1820–1823.

    Google Scholar 

  54. Jorio, A., Dresselhaus, G., Dresselhaus, M. S., Souza, M., Dantas, M. S. S., Pimenta, M. A., Rao, A. M., Saito, R., Liu, C., and Cheng, H. M. (2000) Polarized Raman study of single wall semiconducting carbon nanotubesPhys. Rev. Lett.85, in press.

    Google Scholar 

  55. Brown, S. D. M., Corio, P., Marucci, A., Dresselhaus, M. S., Pimenta, M. A., and Kneipp, K. (2000) Anti-Stokes Raman spectra of single-walled carbon nanotubesPhys. Rev. B Rapid61, R5137¡ªR5140.

    Google Scholar 

  56. Dillon, A. C., Jones, K. M., Bekkedahl, T. A., Kiang, C. H., Bethune, D. S., and Heben, M. J. (1997) Storage of hydrogen in single wall carbon nanotubesNature (London)386, 377–379.

    Article  CAS  Google Scholar 

  57. Dillon, A. C., Gennett, T., Alleman, J. L., Jones, K. M., and Heben, M. J. (1999), private communication (in preparation).

    Google Scholar 

  58. Ye, Y., Ahn, C. C., Witham, C., Fultz, B., Liu, J., Rinzler, A. G., Colbert, D., Smith, K. A., and Smalley, R. E. (1999) Hydrogen adsorption and cohesive energy of single-walled carbon nanotubesAppl. Phys. Lett.74, 2307–2309.

    Article  CAS  Google Scholar 

  59. Chambers, A., Park, C., Baker, R. T. K., and Rodriguez, N. M. (1998) Hydrogen storage in graphite nanofibersPhysical Chemistry B102, 4253–4256.

    Article  CAS  Google Scholar 

  60. Chen, P., Wu, X., Lin, J., and Tan, K. (1999) High H2 uptake by alkali-doped carbon nanotubes under ambient pressure and moderate temperaturesScience285, 91–93.

    Article  CAS  Google Scholar 

  61. Hynek, S. J., Fuller, W., and Bentley, J. (1997)Int. J. Hydrogen Energy22, 601.

    Google Scholar 

  62. Stan, G. and Cole, M. W. (1998) Hydrogen adsorption in nanotubesJ. Low Temp. Phys.110, 539–544.

    Article  CAS  Google Scholar 

  63. Stan, G. and Cole, M. W. (1998) Low coverage adsorption in cylindrical poresSurface Science395, 280–291.

    Article  CAS  Google Scholar 

  64. Wang, Q. and Johnson, J. K. (1999) Computer simulations of hydrogen adsorption on graphite nanofibersJ. Phys. Chem. B103, 277–281.

    Article  CAS  Google Scholar 

  65. Wang, Q. and Johnson, J. K. (1999) Molecular simulations of hydrogen adsorption on single-walled carbon nannotubes and idealized carbon slit poresJ. Chem. Phys.110, 577–586.

    Article  CAS  Google Scholar 

  66. Rzepka, M., Lamp, P., and de la Casa-Lillo, M. A. (1998) Physisorption of hydrogen on microporous carbon and carbon nanotubesJ. Phys. Chem. B102, 10894–10898.

    Article  CAS  Google Scholar 

  67. Liu, C., Fan, Y. Y., Liu, M., Cong, H. T., Cheng, H. M., and Dresselhaus, M. S. (1999) Hydrogen storage in single-walled carbon nanotubes at room temperatureScience286, 1127–1129.

    Article  CAS  Google Scholar 

  68. Dresselhaus, M. S., Williams, K. A., and Eklund, P. C. (1999) Hydrogen adsorption in carbon materialsMRS Bulletin24, 45–50.

    Google Scholar 

  69. Pederson, M. R., Jackson, K. A., and Boyer, L. L. (1992) Enhanced stabilization of C60 crystals through dopingPhys. Rev. B45, 6919–6922.

    Google Scholar 

  70. Heben, M. J. (1999), private communication.

    Google Scholar 

  71. Van Kranendonk, J. (1982), in “Solid hydrogen: Theory of the properties of solid H2, HD, and D2”, Plenum Press, New York, N.Y.

    Google Scholar 

  72. Hellwege, K.-H. and Hellwege, A. M. (eds.) (1988)Landolt-Börnstein Numerical Data and Functional Relationships in Science and Technology New Series III/14a,Springer-Verlag, Berlin, p. 18.

    Google Scholar 

  73. Nielsen, M., McTague, J. P., and Passe11, L. (1979), in Dash, J. G. and Ruvalds, J. (eds.)Phase Transitions in Surface FilmsPlenum press, New york, N.Y., p. 127.

    Google Scholar 

  74. Nielsen, M., McTague, J. P., and Ellenson, W. (1977) Adsorbed layers of molecular deuterium, hydrogen, oxygen, and helium-3 on graphite studied by neutron scatteringJ. Phys.38, C4–10.

    Google Scholar 

  75. Brown, S. D. M., Dresselhaus, G., and Dresselhaus, M. S. (1998) Reversible hydrogen uptake in carbon-based materials, in Rodriguez, N. M., Soled, S. L., and Hrbek, J. (eds.)Recent Advances in Catalytic Materials: MRS Symposium Proceedings Boston Vol. 497,Materials Research Society Press, Pittsburgh, PA, pp. 157–163

    Google Scholar 

  76. Colin, M. and H¨¦rold, A. (1972)Bull. Soc. Chem. Fr.p. 1982.

    Google Scholar 

  77. Furdin, G., Lagrange, P., H¨¦rold, A., and Zeller, C. (1976) Magnetic susceptibility of the ternary phases potassium graphite hydride KC8Hr(0 < x < 2/3)C.R. Acad. Sci. Paris282, C563–566.

    Google Scholar 

  78. Enoki, T., Sano, M., and Inokuchi, H. (1983) Hydrogen in aromatics. III. Chemisorption of hydrogen in graphite-alkali metal intercalation compoundsJ. Chem. Phys.78, 2017–2029.

    Google Scholar 

  79. Inokuchi, H., Wakayama, N., Kondo, T., and Mori, Y. (1967) Activated adsorption of hydrogen on aromatic-alkali-metal charge-transfer complexesJ. Chem. Phys.46, 837–842.

    Google Scholar 

  80. Watanabe, M., Tachikawa, M., and Osaka, T. (1997) On the possibility of hydrogen intercalation of graphite-like carbon materials-electrochemical and molecular orbital studiesElectrochimica Acta42, 2707–2717.

    Google Scholar 

  81. Wang, Q., Challa, S. R., Sholl, D. S., and Johnson, J. K. (1999) Quantum sieving in carbon nanotubes and zeolitesPhys. Rev. Lett.82, 956–959.

    Google Scholar 

  82. Beenakker, J. J. M., Borman, V. D., and Krylov, S. Y. (1995), Molecular transport in subnanometer pores: zero-point energy, reduced dimensionality and quantum sievingChem. Phys. Lett.232, 379–382.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Dresselhaus, M.S. (2001). Electronic Properties of Carbon Nanotubes and Applications. In: Biró, L.P., Bernardo, C.A., Tibbetts, G.G., Lambin, P. (eds) Carbon Filaments and Nanotubes: Common Origins, Differing Applications?. NATO Science Series, vol 372. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0777-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0777-1_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6908-0

  • Online ISBN: 978-94-010-0777-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics