Skip to main content

Part of the book series: NATO Science Series ((NSSE,volume 372))

Abstract

The general principles of scanning tunneling microscopy (STM) will be presented and their application to image interpretation will be discussed. The particular problems that may arise from the three dimensional nature and from the complexity of the tunneling system in the case of supported carbon nanotubes will be considered. An overview of the milestones of STM and scanning tunneling spectroscopy (STS) experiments performed on carbon nanotubes will be given, with particular emphasis on the questions related with atomic resolution imaging, the influence of the two tunneling gaps (tip/nanotube; nanotube/support) and point contacts during imaging. Experimental STS results on multiwall carbon nanotubes and rafts of nanotubes will be discussed and compared to computer simulations based on wave packet dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dresselhaus, M. S., Dresselhaus, G., Ecklund P. C. (1996) Science of Fullerenes and Carbon Nanotubes, Academic Press, San Diego.

    Google Scholar 

  2. Dresselhaus, M. S., Electronic Properties of Nanotubes, This Volume.

    Google Scholar 

  3. Mintmire, J. W., Dunlap, B. I., and White, C. T. (1992) Are Fullerene Tubules Metalic?, Phys. Rev. Lett. 68, 631–634.

    Article  CAS  Google Scholar 

  4. Binnig, G. and Rohrer, H. (1982) Scanning Tunneling Microscopy, Heiv. Phys. Acta 55, 726–735.

    Google Scholar 

  5. Wiesendanger, R. (1994) Scanning Probe Microscopy and Spectroscopy, Cambridge University Press, Cambridge.

    Book  Google Scholar 

  6. Tersoff J. and Hamann D. R. (1985) Theory of the scanning tunneling microscope, Phys, Rev. B 31, 805–813.

    Google Scholar 

  7. Ge, M. and Sattler, K. (1993) Vapor Condenstaion Generation and STM Analysis of Fullerene Tubes, Science 260, 515–518.

    Google Scholar 

  8. Jxhie, J., Sattler, K., Ge, M., Verkateswaran, N. Giant and supergiant lattices on graphite, Phys Rev. B 47, 15835–15841.

    Google Scholar 

  9. Olk, Ch. H., Heremans, J. P. (1994) Scanning tunneling spectroscopy of carbon nanotubes, J. Mater. Res. 9, 259–262.

    Google Scholar 

  10. Biró, L. P., Gyulai. J., Lambin, Ph., B.Nagy, J., Lazraescu, S., Márk, G. I., Fonseca, A., Surján, P., R., Szekeres, Zs., Thiry, P. A., Lucas, A. A. (1998) Scanning tunneling microscopy (STM) imaging of carbon nanotubes, Carbon 36, 689–696.

    Google Scholar 

  11. Márk, G. I., Biró, L. P., Gyulai, J. (1998) Simulation of STM images of three-dimensional surfaces and comparison with experimental data: Carbon nanotubes, Phys. Rev. B 58, 12645–12648.

    Google Scholar 

  12. Ref. [5], pp. 30–34.

    Google Scholar 

  13. Biró, L. P., Lazarescu, S., Lambin, Ph., Thiry, P. A., Fonseca, A., B.Nagy, J., Lucas, A. A., (1997) Scanning tunneling microscope investigation of carbon nanotubes produced by catalytic decomposition of acetylene, Phys. Rev. B 56, 12490–12498.

    Google Scholar 

  14. Biró, L. P., B.Nagy, J., Lambin, Ph., Lazarescu, S., Fonseca, A., Thiry, P. A., Lucas, A. A., (1998) Scanning tunneling microscopy of carbon nanoyubes. Beyond the image, in H. Kuzmany, J. Fink, M. Mehring and S. Roth (eds.), Molecular Nanostructures, World Scientific, Singapore pp. 419–422.

    Google Scholar 

  15. Agrait, N., Rodrigo, J. G., and Vieira, S., (1992) On the transition from tunneling regime to point contact: graphite, Ultramicroscopy 42–44, 177–183.

    Google Scholar 

  16. Hassanien, A., Tokumoto, M., Kumazawa, Y., Kataura, H., Maniwa, Y., Suzuki, S., and Achiba, Y., (1998) Atomic structure and electronic properties of single-wall carbon nanotubes probed by scanning tunneling microscope at room temperature, Appl. Phys. Lett. 81, 3839–3841.

    Article  Google Scholar 

  17. Biró, L. P., Thiry, P. A., Lambin, Ph., Journet, C., Bernier, P., and A. A. Lucas, (1998) Influence of tunneling voltage on the imaging of carbon nanotube rafts by scanning tunneling microscopy, Appl. Phys. Leu. 73, 3680–3682.

    Article  Google Scholar 

  18. Wildöer, J. W., Venema, L. C., Rinzler, G. R., Smalley, R. E., Dekker, C. (1998) Electronic structure of atomically resolved carbon nanotubes, Nature 391, 59–62

    Article  Google Scholar 

  19. Odom, T. W., Huang, J-L., Kim. Ph., Lieber, Ch. M., (1998) Atomic structure and electronic properties of single-walled carbon nanotubes, Nature 391, 62–64.

    CAS  Google Scholar 

  20. Carroll, D. L., Redlich, P., Ajayan, P. M., Charlier, J. C., Blasé, X., De Vita, A., and Car, R, (1997) Electronic structure and localized states at carbon nanotube tips, Phys. Rev. Lett. 78, 2811–2814.

    Article  CAS  Google Scholar 

  21. Márk, G. I., Biró, L. P., Gyulai, J., Thiry, P. A., Lambin, Ph. (1999) The use of computer simulation to investigate tip shape and point contact effects during scanning tunneling microscopy of supported nanostructures, in H. Kuzmany, J. Fink, M. Mehring and S. Roth (eds.), Electronic Properties of Novel Materials — Science and Technology of Molecular Nanostructures, American Institute of Physics, Melville, pp.323–327.

    Google Scholar 

  22. Márk, G. I., Biró, L. P., Gyulai, J., Thiry, P. A., Lucas, A. A., and Lambin, Ph. (2000) Simulation of scanning tunneling spectroscopy of supported carbon nanotubes, Phys. Rev. B 62, (in press).

    Google Scholar 

  23. Meunier, V., and Lambin, Ph. (1998) Tight-binding computation of the STM image of carbon nanotubes, Phys. Rev. Lett. 81, 5588–5591.

    Article  CAS  Google Scholar 

  24. Lambin, Ph., Interpretation of the STM Images of Carbon Nanotubes, This Volume.

    Google Scholar 

  25. Olk, C. H., Heremans, J., Dresselahaus, M. S., Speck, J. S., Nicholls, J. T. (1990) Scanning tunneling microscopy of a stage-1 CuC112 graphite intercalation compound, Phys. Rev. B 42, 7524–7529.

    Article  CAS  Google Scholar 

  26. Charlier, J.-C., and Lambin, Ph. (1998) Electronic structure of carbon nanotubes with chiral symmetry, Phys. Rev. B 57, R15037 — R15039.

    Google Scholar 

  27. Biró, L. P., Ehlich, R., Tellgmann, R., Gromov, A., Krawez, N., Tschaplyguine, M., Pohl, M.-M., Véretsy, Z., Horváth, Z. E., Campbell, E. E. B. (1999) Growth of carbon nanotubes by fullerene decomposition in the presence of transition metals, Chem. Phys. Lett. 306, 155 - 162.

    Google Scholar 

  28. Biró, L. P., Ehlich, R., (submitted to Appl. Phys. Lett.) Room temperature growth of single and multi wall carbon nanotubes by [60]fullerene decomposition in the presence of transition metals.

    Google Scholar 

  29. Lambin, Ph., Charlier, J.-C., Michenaud, J.-P., (1994) Electronic structure of coaxial carbon tubules in H. Kuzmany, J. Fink, M. Mehring, S. Roth (eds.), Progress in Fullerene Research, World Scientific, Singapore, pp. 131–134.

    Google Scholar 

  30. Venema, L. C., Wildöer, J. W. G., Temminck Tuinstra, H. L. J., Dekker, C., Rinzler, A. G., Smalley, R., E., (1997) Length control of individual carbon nanotubes by nanostructuring with a scanning tunneling microscope, Appl. Phys. Lett. 71, 2629–2631

    Article  CAS  Google Scholar 

  31. Nagy, P., Ehlich, R., Biró, L. P., Gyulai, J., (2000) Y-branching of single walled carbon nanotubes, Appl. Phys. A 70.481–483

    Article  CAS  Google Scholar 

  32. Biró. L. P., Lazarescu, S. D., Thiry, P. A., Fonseca, A., B.Nagy, J., Lucas, A. A., Lambin Ph. (2000) Scanning tunneling microscopy observation of tightly wound, single-wall coiled carbon nanotubes, Europhys. Lett. 50, 494–500

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Biró, L.P., Márk, G.I. (2001). STM Investigation of Carbon Nanotubes. In: Biró, L.P., Bernardo, C.A., Tibbetts, G.G., Lambin, P. (eds) Carbon Filaments and Nanotubes: Common Origins, Differing Applications?. NATO Science Series, vol 372. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0777-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0777-1_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6908-0

  • Online ISBN: 978-94-010-0777-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics