Skip to main content

Possibilities and Limitations of Vaccination

  • Chapter
The Role of Biotechnology in Countering BTW Agents

Part of the book series: NATO Science Series ((ASDT,volume 34))

  • 132 Accesses

Abstract

The development of vaccines has been one of the most important endeavors in the fight to counter and control infectious diseases. Vaccination is based on the activation of a protective immune response to the infectious agent by immunogenic antigens of the pathogenic microorganism. Most microorganisms are not pathogenic but are indeed beneficial and can enrich our lives. Some species or strains among the microorganisms in the categories including viruses, bacteria, fungi, and protozoa can, however, produce disease. The processes by which such microorganisms cause infectious diseases are not in many cases completely understood. GeneraIly, these organisms must be able to either colonize or invade the tissues and to cause damage. In this respect, many disease-causing microorganisms produce toxins, which are poisonous products of their metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. DiRita, V.J. (1994) Multiple regulatory systems inVibrio choleraepathogenesisTrends Microbiol. 237–38.

    Article  Google Scholar 

  2. Straley, S.C. and Perry, R.D. (1995) Environmental modulation of gene expression and pathogenesis inYersinia Trends Microbiol. 3310–317.

    Article  Google Scholar 

  3. Leclerc, C., and Ronco, J. (1998) New approaches in vaccine developmentImmunol. Today 19300–302.

    Article  Google Scholar 

  4. Hess, J., and Kaufmann, S.H.E. (1996) Neue Strategien in der Impfstoff-EntwicklungBiospektrum 418–23.

    Google Scholar 

  5. Kuby, J. (1997) Immunology, Third Edition, W.H. Freeman and Company, New York.

    Google Scholar 

  6. Abbas, A.K., Lichtman, A.H., Pober, J.S. (1997)Cellular and Molecular ImmunologyThird Edition, W.B. Saunders Company, Philadelphia.

    Google Scholar 

  7. Pearce, E.J., Caspar, P., Grzych, J.-M., Lewis, F.A., and Sher, A. (1991) Downregulation of Thl cytokine production accompanies induction of Th2 responses by a parasitic helminthShistosoma mansoni J. Exp. Med.173, 159–166.

    Article  Google Scholar 

  8. Marinaro, M., Staats, H.F., Hiroi, T., Jackson, R.J., Coste, M., Boyaka, P.N., Okahashi, N., Yamamoto, M., Kiyono, H., Bluethmann, H., Fujihashi, K., and McGhee, J.R. (1995) Mucosal adjuvant effect of cholera toxin in mice results from induction of T helper 2 (Th2) cells and IL-4,.I.Immunol.155, 4621–4629.

    Google Scholar 

  9. VanCott, J.L., Staats, H.F., Pascual, D.W., Roberts, M., Chatfield, S.N., Yamamoto, M., Coste, M., Carter, P.B., Kiyono, H., and McGhee, J.R. (1996) Regulation of mucosal and systemic antibody responses by T helper cell subsets, macrophages, and derived cytokines following oral immunization with live recombinantSalmonella J. Immunol.156, 1504–1514.

    Google Scholar 

  10. Bona, C.A., Casares, S., and Brumeanu, T.-D. (1998) Towards development of T-cell vaccinesImmunol. Today19, 126–133.

    Google Scholar 

  11. Liew, F.Y. (1988) Biotechnological trends towards synthetic vaccinesImmunol. Lett.19, 241–244.

    Article  Google Scholar 

  12. Chattergoon, M., Boyer, J., and Weiner, D.B. (1997) Genetic immunization: a new era in vaccines and immune therapeuticsFASEB J.11, 753–763.

    Google Scholar 

  13. Tighe, H., Corr, M., Roman, M., and Raz, E. (1998) Gene vaccination: plasmid DNA is more than just a blueprintImmunol. Today19, 89–97.

    Article  Google Scholar 

  14. Ulmer, J.B., Donnelly, J.J., and Liu, M.A. (1996) DNA vaccines promising: a new approach to inducing protective immunityASM News62, 476–479.

    Google Scholar 

  15. Young, P. (1997) Bright outlook on direct DNA immunizationsASM News63, 659–663.

    Google Scholar 

  16. Stephenne, A. (1988) Recombinant versus plasma-derived hepatitis B vaccines: issues of safety, immunogenicity and cost-effectivenessVaccine6, 299–303.

    Article  Google Scholar 

  17. Welkos, S.L., and Friedlander, A.M. (1988) Comparative safety and efficacy againstBacillus anthracisof protective antigen and live vaccines in m iceMicrob. Pathog.5, 127–139.

    Article  Google Scholar 

  18. Tzschaschel, B.D., Guzman, C., Timmis, K.N., and de Lorenzo, V. (1996) AnEscherichia colihemolysin transport system-based vector for the export of polypeptides: Export of Shiga-like toxin IIeB subunit bySalmonella typhimuriumaroANature Biotechnol.14, 765–769.

    Article  Google Scholar 

  19. Van Regenmortel, M. (1997) Searching for safer, more potent, better-targeted adjuvantsASM News63, 136–139.

    Google Scholar 

  20. Kissel, T., Koneberg, R., Hilbert, A.K., and Hungerer, K.-D. (1997) Micro-encapsulation of antigens using biodegradable polyesters: facts and phantasiesBehring Institute Mitteilungen 98172–183.

    Google Scholar 

  21. Hancock, R.E.W., and Wong, R. (1997) Potential of protein OprF ofPseudomonasin bivalent vaccinesBehring Institute Mitteilungen 98283–290.

    Google Scholar 

  22. Fischetti, V.A. (1996) Gram-positive commensal bacteria deliver antigens to elicit mucosal and systemic immunityASM News 62405–410.

    Google Scholar 

  23. Medaglini, D., Pozzi, G., King, T.P., and Fischetti, V.A. (1995) Mucosal and systemic immune responses to a recombinant protein expressed on the surface of the oral commensal bacteriumStreptococcus gordoniiafter oral immunization.Proc. Natl. Acad. Sci. USA 926868–6872.

    Article  Google Scholar 

  24. Bundesamt für Zivilschutz.(1975)Zivilschutz. Gefahren aus der Retorte. Gesundheitliche Aspekte bei chemischen und biologischen KampfinittelBand 6, BZS-Schriftenreihe, Weltgesundheitsorganisation (WHO), Mönch, Bonn].

    Google Scholar 

  25. Cong, Y., Weaver, C.T., and Elson, C.O. (1997) The mucosal adjuvanticity of cholera toxin involves enhancement of costimulatory activity by selective up-regulation of B7.2 expressionI. Immunol. 1595301–5308.

    Google Scholar 

  26. Medina, E., Talay, S.R., Chhatwal, G.S., and Guzman, C.A. (1998) Fibronectin-binding protein I ofStreptococcus pyogenes isa promising adjuvant for antigens delivered by mucosal routeEur. Immunol. 281069–1077.

    Article  Google Scholar 

  27. Moss, B. (1985) Vaccinia virus expression vector: a new tool for immunologistsImmunol. Today 6243–245.

    Article  Google Scholar 

  28. Perkus, M.E., Piccini, A., Lipinskas, B.R., and Paoletti, E. (1985) Recombinant vaccinia virus: immunization against multiple pathogensScience 229981–984.

    Article  Google Scholar 

  29. Restifo, N.P. (1996) The new vaccines: building viruses that elicit antitumor immunityCurrent Opin. Immunol. 8658–663.

    Article  Google Scholar 

  30. Morsy, M.A., and Caskey, C.T. (1997) Safe gene vectors made simplerNature Biotechnol. 1517.

    Article  Google Scholar 

  31. Kochanek, S., Clemens, P.R., Mitani, K., Chen, H.-H., Chan, S., and Caskey, C.T. (1996) A new adenoviral vector: Replacement of all viral coding sequences with 28 kb of DNA independently expressing both full-length dystrophin and (3-galactosidaseProc. Natl. Acad Sci. USA 935731–5736.

    Article  Google Scholar 

  32. Carter, B.J. (1996) The promise of adeno-associated virus vectorsNature Biotechnol. 141725–1725.

    Article  Google Scholar 

  33. Berglund, P., Tubulekas, I., and Liljeström, P. (1996) Alphaviruses as vectors for gene deliveryTrends Biotechnol. 14130–134.

    Article  Google Scholar 

  34. Strauss, J.H., and Strauss, E. (1994) The alphaviruses: gene expression, replication, and evolutionMicrobiol. Rev. 58491–562.

    Google Scholar 

  35. Rolph, M.S., and Ramshaw, I.A. (1997) Recombinant viruses as vaccines and immunological toolsCurrent Opin. Immunol. 9517–524.

    Article  Google Scholar 

  36. Thomson, S.A., Elliott, S.L., Sherritt, M.A., Sproat, K.W., Coupar, B.E.H., Scalzo, A.A., Forbes, C.A:; Ladhams, A.M., Mo, X.Y., Tripp, R.A., Doherty, P.C., Moss, D.J., and Suhrbier, A. (1996) Recombinant polyepitope vaccines for the delivery of multiple CD8 cytotoxic T cell epitopesJ. Immunol. 157822–826.

    Google Scholar 

  37. An, L., and Whitton, J.L. (1997) A multivalent minigene vaccine, containing B-cell, cytotoxic T-lymphocyte, and Th epitopes from several microbes, induces appropriate responses in vivo and confers protection against more than one pathogen, J.Virol. 712292–2302.

    Google Scholar 

  38. Dougan, G., Chatfield, S., Pickard, D., Bester, J., O’Callaghan, D., and Maskell, D. (1988) Construction and characterization of vaccine strains ofSalmonellaharboring mutations in two differentarogenes, J.Infect. Dis. 1581329–1335.

    Article  Google Scholar 

  39. Levine, M.M., Galen, J., Barry, E., Noriega, F., Tacket, C., Sztcin, M., Chatfield, S., Dougan, G., Losonsky, G., and Kotloff, K. (1997) AttenuatedSalmonella typhiandShigellaas live oral vaccines and as live vectorsBehring Institute Mitteilungen 98120–123.

    Google Scholar 

  40. Steidler, L., Robinson, K., Chamberlain, L., Schofeld, K.M., Remaut, E., Le Page, R.W.F., and Wells, J.M. (1998) Mucosal delivery of murine interleukin-2 (IL-2) and IL-6 by recombinant strains ofLactococcus lactisco-expressing antigen and cytokineInfect. Immun. 663183–3189.

    Google Scholar 

  41. Sirard, J.-C., Fayolle, C., de Chastellier, C., Mock, M., Leclerc, C., and Berche, P. (1997) Intracytoplasmic delivery of Listeriolysin O by a vaccinal strain ofBacillus anthracisinduces CD8-mediated protection againstListeria monocytogenes. I Immunol. 1594435–4443.

    Google Scholar 

  42. Fox, J. (1997) Taking multiple paths toward mucosal immunityASM News 63413–414.

    Google Scholar 

  43. Ulmer, J.B., Sadoff, J.C., and Liu, M.A. (1996) DNA vaccinesCurr. Opin. Immunol. 8531–536.

    Article  Google Scholar 

  44. Thomson, S.A., Sherritt, M.A., Medveczky, J., Elliott, S.L., Moss, D.J., Fernando, G.J.P., Brown, L.E., and Suhrbier, A. (1998) Delivery of multiple CD8 cytotoxic T cell epitopes by DNA vaccinationI. Immunol. 1601717–1723.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Nixdorff, K. (2001). Possibilities and Limitations of Vaccination. In: Kelle, A., Dando, M.R., Nixdorff, K. (eds) The Role of Biotechnology in Countering BTW Agents. NATO Science Series, vol 34. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0775-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0775-7_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6906-6

  • Online ISBN: 978-94-010-0775-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics