Theory of Valence Transitions in Ytterbium-Based Compounds

  • V. Zlatic
  • J. K. Freericks
Chapter
Part of the NATO Science Series book series (NAII, volume 15)

Abstract

The anomalous behavior of YbInCu4 and similar compounds is modeled by the exact solution of the spin one-half Falicov-Kimball model in infinite dimensions. The valence-fluctuating transition is related to a metal-insulator transition caused by the Falicov-Kimball interaction, and triggered by the change in the f-occupancy.

Keywords

Entropy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    I. Feiner and I. Novik., Phys. Rev. B 33, 617 (1986).ADSCrossRefGoogle Scholar
  2. [2]
    J.L. Sarrao et al., Physics B, 223&224, 366 (1996).CrossRefGoogle Scholar
  3. [3]
    J. M. Lawrence et al., Phys. Rev. B, 55, 14 467 (1997).CrossRefGoogle Scholar
  4. [4]
    A. L. Cornelius et al., Phys. Rev. B, 56, 7993 (1997).ADSCrossRefGoogle Scholar
  5. [5]
    C. D. Immer et al., Phys. Rev. B, 56, 71 (1997).ADSCrossRefGoogle Scholar
  6. [6]
    J.L. Sarrao et al., Phys. Rev. B, 58, 409 (1998)ADSCrossRefGoogle Scholar
  7. [7]
    J.L. Sarrao, Physica B, 259&261, 129 (1999)Google Scholar
  8. [8]
    E. Figueroa et al., Solid State Commun. 106, 347 (1998)ADSCrossRefGoogle Scholar
  9. [9]
    M. Ocko, J. Sarrao, Z. Fisk, unpublished.Google Scholar
  10. [10]
    S. R. Garner et al., preprint (2000).Google Scholar
  11. [11]
    T. S. Altshuler et al., Z. Phys. B99, 57 (1995).ADSCrossRefGoogle Scholar
  12. [12]
    C. Rettori et al., Phys. Rev. B, 55, 1016 (1997).Google Scholar
  13. [13]
    L. M. Falicov and J. C. Kimball, Phys. Rev. Lett. 22, 997 (1969).ADSCrossRefGoogle Scholar
  14. [14]
    W. Metzner and D. Vollhardt, Phys. Rev. Lett. 62, 324 (1989).ADSCrossRefGoogle Scholar
  15. [15]
    U. Brandt and C. Mielsch, Z.Phys. B 75, 365 (1989); U. Brandt and M. P. Urbanek, ibid. 89, 297 (1992).ADSCrossRefGoogle Scholar
  16. [16]
    J. Freericks and V. Zlatic, Phys. Rev. B 58, 322 (1998).ADSCrossRefGoogle Scholar
  17. [17]
    L.P. Kadanoff and G. Baym, Quantum Statistical Physics (W. A. Benjamin, Menlo Park, CA), 1962Google Scholar
  18. [18]
    H. B. Krishnamurti et al., Phys. Rev. B 21, 1044 (1980).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • V. Zlatic
    • 1
    • 3
  • J. K. Freericks
    • 2
    • 3
  1. 1.Institute of PhysicsZagrebCroatia
  2. 2.Department of PhysicsGeorgetown UniversityWashingtonUSA
  3. 3.Isaac Newton InstituteCambridgeUK

Personalised recommendations