Skip to main content

Studies of the Mott-Hubbard Transition in one and Infinite Dimensions

  • Chapter
Open Problems in Strongly Correlated Electron Systems

Part of the book series: NATO Science Series ((NAII,volume 15))

  • 515 Accesses

Abstract

We discuss the Mott-Hubbard transition, the metal-insulator transition as a function of interaction strength U, for the half-filled Hubbard model in two numerically tractable cases: on a one-dimensional chain with nearest-neighbor hopping t’, and in the limit of infinite dimensions. In the one-dimensional model, we calculate the electric susceptibility using the Density Matrix Renormalization Group and show that the transition is infinite order, irrespective of t’ In infinite dimensions, we use the Random Dispersion Approximation to calculate the behavior of the quasiparticle weight and the single-particle gap for the transition from the paramagnetic metal to the paramagnetic insulator. Within the accuracy of our calculations, we find no evidence of the discontinuous behavior found in other approaches to the infinite-dimensional limit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N.F. Mott, Metal-Insulator Transitions, 2nd ed. (Taylor and Francis, London, 1990).

    Google Scholar 

  2. F. Gebhard, The Mott Metal-Insulator Transition, Springer Tracts in Modern Physics Vol. 137 (Springer, Berlin, 1997).

    Google Scholar 

  3. M. Fabrizio, Phys. Rev. B 54, 10054 (1996).

    Article  ADS  Google Scholar 

  4. S. Eggert, Phys. Rev. B 54, 9612 (1996); K. Okamoto and K. Nomura, Phys. Lett. A 169, 422 (1992).

    Article  ADS  Google Scholar 

  5. R. Arita, K. Kuroki, H. Aoki, and M. Fabrizio, Phys. Rev. B 57, 10 324 (1998).

    Google Scholar 

  6. S. Daul and R. M. Noack, Phys. Rev. B 61, 1646 (2000).

    Article  ADS  Google Scholar 

  7. R. Resta, Phys. Rev. Lett. 80, 1800 (1998); R. Resta and S. Sorella, Phys. Rev. Lett. 82, 370 (1999).

    Article  ADS  Google Scholar 

  8. C. Aebischer, D. Baeriswyl, and R. M. Noack, cond-mat/0006354.

    Google Scholar 

  9. A. A. Ovchinnikov, Sov. Phys. JETP 30, 1160 (1970).

    ADS  Google Scholar 

  10. C. A. Stafford and A. J. Millis, Phys. Rev. B 48, 1409 (1993).

    Article  ADS  Google Scholar 

  11. V. Privman and M. E. Fisher, Phys. Rev. B 30, 322 (1984).

    Article  MathSciNet  ADS  Google Scholar 

  12. A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg, Rev. Mod. Phys. 68, 13 (1996).

    Article  MathSciNet  ADS  Google Scholar 

  13. R. M. Noack and F. Gebhard, Phys. Rev. Lett. 82, 1915 (1999).

    Article  ADS  Google Scholar 

  14. E. R. Davidson, Comp. in Physics 7, 519 (1993).

    Google Scholar 

  15. M. J. Rozenberg, G. Moeller, and G. Kotliar, Mod. Phys. Lett. B 8, 535 (1994).

    Article  ADS  Google Scholar 

  16. M. Caffarel and W. Krauth, Phys. Rev. Lett. 72, 1545 (1994).

    Article  ADS  Google Scholar 

  17. G. Moeller, Q. Si, G. Kotliar, M. J. Rozenberg, and D. S. Fisher, Phys. Rev. Lett. 74, 2082 (1995).

    Article  ADS  Google Scholar 

  18. R. Bulla, Phys. Rev. Lett. 83, 136 (1999).

    Article  ADS  Google Scholar 

  19. J. Schlipf et al., Phys. Rev. Lett. 82, 4890 (1999).

    Article  ADS  Google Scholar 

  20. M. Rozenberg, R. Chitra, and G. Kotliar, Phys. Rev. Lett. 83, 3498 (1999).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Noack, R.M., Aebischer, C., Baeriswyl, D., Gebhard, F. (2001). Studies of the Mott-Hubbard Transition in one and Infinite Dimensions. In: Bonča, J., Prelovšek, P., Ramšak, A., Sarkar, S. (eds) Open Problems in Strongly Correlated Electron Systems. NATO Science Series, vol 15. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0771-9_36

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0771-9_36

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6896-0

  • Online ISBN: 978-94-010-0771-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics