Skip to main content

Inhomogeneous Luttinger Liquids: Power-Laws and Energy Scales

  • Chapter
  • 504 Accesses

Part of the book series: NATO Science Series ((NAII,volume 15))

Abstract

We present a study of the one-particle spectral properties for a variety of models of Luttinger liquids with open boundaries. First we show that the Hamiltonian for an interaction which is long range in real space can be written as a quadratic from in bosons (bosonization) and calculate the spectral weight. For weak interactions the boundary exponent of the power-law suppression of the weight close to the chemical potential is dominated by a term linear in the interaction. This motivates us to investigate the spectral properties within the Hartree-Fock approximation. It gives power-law behavior and qualitative agreement with the exact spectral function. For the lattice model of spinless fermions and the Hubbard model we present numerically exact results obtained by using the density-matrix renormalization-group algorithm. Again many aspects of the behavior of the spectral function close to the boundary can be understood within the Hartree-Fock approximation. For the Hubbard model with weak interaction U the spectral weight is enhanced in a large energy range around the chemical potential. Following a crossover at exponentially (in 1/U) small energies a power-law suppression, as predicted by bosonization, sets in. This shows that for small U bosonization only holds on exponentially small energy scales.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. For a review see: J. Voit, Rep. Prog. Phys. 58, 977 (1995).

    Article  ADS  Google Scholar 

  2. S. Tomonaga, Prog. Theor. Phys. 5, 544 (1950).

    Article  MathSciNet  ADS  Google Scholar 

  3. J.M. Luttinger, J. Math. Phys. 4, 1154 (1963).

    Article  MathSciNet  ADS  Google Scholar 

  4. D.C. Mattis and E.H. Lieb, J. Math. Phys. 6, 304 (1965).

    Article  MathSciNet  ADS  Google Scholar 

  5. Here we do not consider umklapp scattering processes which only occur in lattice models and even there are irrelevant as long as the interaction is sufficient weak or the filling factor sufficient incommensurable (see e.g. Ref. [1]).

    Google Scholar 

  6. J. Sólyom, Adv. Phys. 28, 201 (1979).

    Article  ADS  Google Scholar 

  7. F.D.M. Haldane, J. Phys. C14, 2585 (1981).

    ADS  Google Scholar 

  8. R. Preuss et al., Phys. Rev. Lett. 73, 732 (1994).

    Article  ADS  Google Scholar 

  9. For a recent review of the experimental situation see: M. Grioni and J. Voit in Electron spectroscopies applied to low-dimensional materials, ed. by H. Stanberg and H. Hughes (1999).

    Google Scholar 

  10. D.C. Mattis, J. Math. Phys. 15, 609 (1974).

    Article  ADS  Google Scholar 

  11. C.L. Kane and M.P.A. Fisher, Phys. Rev. Lett. 68, 1220 (1992).

    Article  ADS  Google Scholar 

  12. M. Fabrizio and A. Gogolin, Phys. Rev. B 51, 17827 (1995).

    Article  ADS  Google Scholar 

  13. S. Eggert et al., Phys. Rev. Lett. 76, 1505 (1996).

    Article  ADS  Google Scholar 

  14. Y. Wang et al., Phys. Rev. B 54, 8491 (1996).

    Article  ADS  Google Scholar 

  15. K. Schönhammer et al., Phys. Rev. B 61, 4393 (2000).

    Article  ADS  Google Scholar 

  16. J. Voit et al., Phys. Rev. B 61, 7930 (2000).

    Article  ADS  Google Scholar 

  17. V. Meden et al., cond-mat/0002215 and Eur. Phys. J. B (2000), in press.

    Google Scholar 

  18. The additional states are assumed to be filled in the ground state and thus do not modify the low-energy physics of the model.

    Google Scholar 

  19. This implies that for repulsive interactions (Ṽ (0) > 0) the prefactor of the logarithm in Eq. (9) is positive and the perturbative expression indicates a suppression of the weight.

    Google Scholar 

  20. Density-Matrix Renormalization, ed. by I. Peschel et al. (Springer, Berlin, 1999) and references therein.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Meden, V., Metzner, W., Schollwöck, U., Schönhammer, K. (2001). Inhomogeneous Luttinger Liquids: Power-Laws and Energy Scales. In: Bonča, J., Prelovšek, P., Ramšak, A., Sarkar, S. (eds) Open Problems in Strongly Correlated Electron Systems. NATO Science Series, vol 15. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0771-9_29

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0771-9_29

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6896-0

  • Online ISBN: 978-94-010-0771-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics