Advertisement

Drude Weight, Integrable Systems and the Reactive Hall Constant

  • X. Zotos
  • F. Naef
  • M. Long
  • P. Prelovšek
Chapter
Part of the NATO Science Series book series (NAII, volume 15)

Abstract

The Drude weight D, characterizing the reactive part of the conductivity, can be used as a criterion of a metallic or insulating ground state. Here, we will discuss how D remains finite at all temperatures, implying ideal conductivity (ballistic transport) in integrable quantum many body systems commonly used in the description of quasi-one dimensional materials. We will relate this singular behavior to the existence of conservation laws in integrable systems and discuss, in particular, the energy and spin dynamics of the spin 1/2 Heisenberg model.

In a different context, we will show that in a certain limit, the zero temperature reactive Hall constant RH, is related to the density dependence of the Drude weight. This novel formulation implies a simple picture for the change of sign of charge carriers in the vicinity of a Mott-Hubbard transition.

Keywords

Integrable System Hubbard Model Heisenberg Model Integrable Quantum Ballistic Transport 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    W. Kohn, Phys. Rev. 133, A171 (1964).MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    H. Castella, X. Zotos, P. Prelovšek, Phys. Rev. Lett. 74, 972 (1995).ADSCrossRefGoogle Scholar
  3. [3]
    X. Zotos and P. Prelovšek, Phys. Rev. B53, 983 (1996).ADSGoogle Scholar
  4. [4]
    P. Mazur, Physica 43, 533 (1969).MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    X. Zotos, F. Naef and P. Prelovšek, Phys. Rev. B55 11029 (1997).ADSGoogle Scholar
  6. [6]
    F. Naef and X. Zotos, J. Phys. C. 10, L183 (1998); F. Naef, Ph. D. thesis no.2127, EPF-Lausanne (2000).Google Scholar
  7. [7]
    S. Fujimoto and N. Kawakami, J. Phys. A. 31, 465 (1998).MathSciNetADSMATHCrossRefGoogle Scholar
  8. [8]
    S. Fujimoto, J. Phys. Soc. Jpn., 68, 2810 (1999).ADSCrossRefGoogle Scholar
  9. [9]
    X. Zotos, Phys. Rev. Lett. 82, 1764 (1999).ADSCrossRefGoogle Scholar
  10. [10]
    T. Prosen, Phys. Rev. Lett. 80, 1808 (1998).ADSCrossRefGoogle Scholar
  11. [11]
    A. Rosch and N. Andrei, cond-mat/0002306.Google Scholar
  12. [12]
    M. Takigawa, N. Motoyama, H. Eisaki and S. Uchida, Phys. Rev. Lett. 76, 4612 (1996).ADSCrossRefGoogle Scholar
  13. [13]
    A.V. Sologubenko, E. Felder, K. Giannò, H.R. Ott, A. Vietkine and A. Revcolenschi, preprint (2000).Google Scholar
  14. [14]
    P. Prelovšek, Phys. Rev. B 55, 9219 (1997).ADSCrossRefGoogle Scholar
  15. [15]
    P. Prelovšek, M. Long, T. Markez and X. Zotos, Phys. Rev. Lett. 83, 2785 (1999).ADSCrossRefGoogle Scholar
  16. [16]
    X. Zotos, F. Naef, M. Long and P. Prelovšek, Phys. Rev. Lett. (2000).Google Scholar
  17. [17]
    J.R. Cooper et al., J. Phys. (Paris) 38, 1097 (1977); K. Maki and A. Virosztek, Phys. Rev. B41, 557 (1990).CrossRefGoogle Scholar
  18. [18]
    F.D.M. Haldane, Phys. Lett. 81A, 153 (1981).MathSciNetADSGoogle Scholar
  19. [19]
    N. Kawakami and S-K. Yang, Phys. Rev. B44, 7844 (1991).ADSGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • X. Zotos
    • 1
  • F. Naef
    • 1
  • M. Long
    • 2
  • P. Prelovšek
    • 3
  1. 1.Institut Romand de Recherche Numérique en Physique des Matériaux (IRRMA)LausanneSwitzerland
  2. 2.Department of PhysicsUniversity of Birmingham, EdgbastonBirminghamUK
  3. 3.1000 Ljubljana, Slovenia J. Stefan InstituteUniversity of LjubljanaLjubljanaSlovenia

Personalised recommendations