Drude Weight, Integrable Systems and the Reactive Hall Constant

  • X. Zotos
  • F. Naef
  • M. Long
  • P. Prelovšek
Part of the NATO Science Series book series (NAII, volume 15)


The Drude weight D, characterizing the reactive part of the conductivity, can be used as a criterion of a metallic or insulating ground state. Here, we will discuss how D remains finite at all temperatures, implying ideal conductivity (ballistic transport) in integrable quantum many body systems commonly used in the description of quasi-one dimensional materials. We will relate this singular behavior to the existence of conservation laws in integrable systems and discuss, in particular, the energy and spin dynamics of the spin 1/2 Heisenberg model.

In a different context, we will show that in a certain limit, the zero temperature reactive Hall constant RH, is related to the density dependence of the Drude weight. This novel formulation implies a simple picture for the change of sign of charge carriers in the vicinity of a Mott-Hubbard transition.


Soliton Compressibility Haldane Maki 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    W. Kohn, Phys. Rev. 133, A171 (1964).MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    H. Castella, X. Zotos, P. Prelovšek, Phys. Rev. Lett. 74, 972 (1995).ADSCrossRefGoogle Scholar
  3. [3]
    X. Zotos and P. Prelovšek, Phys. Rev. B53, 983 (1996).ADSGoogle Scholar
  4. [4]
    P. Mazur, Physica 43, 533 (1969).MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    X. Zotos, F. Naef and P. Prelovšek, Phys. Rev. B55 11029 (1997).ADSGoogle Scholar
  6. [6]
    F. Naef and X. Zotos, J. Phys. C. 10, L183 (1998); F. Naef, Ph. D. thesis no.2127, EPF-Lausanne (2000).Google Scholar
  7. [7]
    S. Fujimoto and N. Kawakami, J. Phys. A. 31, 465 (1998).MathSciNetADSMATHCrossRefGoogle Scholar
  8. [8]
    S. Fujimoto, J. Phys. Soc. Jpn., 68, 2810 (1999).ADSCrossRefGoogle Scholar
  9. [9]
    X. Zotos, Phys. Rev. Lett. 82, 1764 (1999).ADSCrossRefGoogle Scholar
  10. [10]
    T. Prosen, Phys. Rev. Lett. 80, 1808 (1998).ADSCrossRefGoogle Scholar
  11. [11]
    A. Rosch and N. Andrei, cond-mat/0002306.Google Scholar
  12. [12]
    M. Takigawa, N. Motoyama, H. Eisaki and S. Uchida, Phys. Rev. Lett. 76, 4612 (1996).ADSCrossRefGoogle Scholar
  13. [13]
    A.V. Sologubenko, E. Felder, K. Giannò, H.R. Ott, A. Vietkine and A. Revcolenschi, preprint (2000).Google Scholar
  14. [14]
    P. Prelovšek, Phys. Rev. B 55, 9219 (1997).ADSCrossRefGoogle Scholar
  15. [15]
    P. Prelovšek, M. Long, T. Markez and X. Zotos, Phys. Rev. Lett. 83, 2785 (1999).ADSCrossRefGoogle Scholar
  16. [16]
    X. Zotos, F. Naef, M. Long and P. Prelovšek, Phys. Rev. Lett. (2000).Google Scholar
  17. [17]
    J.R. Cooper et al., J. Phys. (Paris) 38, 1097 (1977); K. Maki and A. Virosztek, Phys. Rev. B41, 557 (1990).CrossRefGoogle Scholar
  18. [18]
    F.D.M. Haldane, Phys. Lett. 81A, 153 (1981).MathSciNetADSGoogle Scholar
  19. [19]
    N. Kawakami and S-K. Yang, Phys. Rev. B44, 7844 (1991).ADSGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • X. Zotos
    • 1
  • F. Naef
    • 1
  • M. Long
    • 2
  • P. Prelovšek
    • 3
  1. 1.Institut Romand de Recherche Numérique en Physique des Matériaux (IRRMA)LausanneSwitzerland
  2. 2.Department of PhysicsUniversity of Birmingham, EdgbastonBirminghamUK
  3. 3.1000 Ljubljana, Slovenia J. Stefan InstituteUniversity of LjubljanaLjubljanaSlovenia

Personalised recommendations