Diagrammatic Theory of Anderson Impurity Models: Fermi and Non-Fermi Liquid Behavior

  • Johann Kroha
  • Peter Wölfle
Chapter
Part of the NATO Science Series book series (NAII, volume 15)

Abstract

We review a recently developed method, based on a pseudoparticle representation of correlated electrons, to describe both Fermi liquid and non-Fermi liquid behavior in quantum impurity systems. The role of the projection onto the physical Hilbert space and the impossibility of slave boson condensation are discussed. By summing the leading coherent spin and charge fluctuation processes in a fully self-consistent and gauge invariant way one obtains the correct infrared behavior of the pseudoparticles. The temperature dependence of the spin susceptibility for the single channel and two-channel Anderson models is calculated and found to agree well with exact results.

Keywords

Tral CTMA 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. C. Hewson, The Kondo Problem to Heavy Fermions (C.U.P., Cambridge, 1993).CrossRefGoogle Scholar
  2. [2]
    For a comprehensive overview see D. L. Cox and A. Zawadowski, Adv. Phys. 47, 599 (1998).CrossRefGoogle Scholar
  3. [3]
    W. Metzner and D. Vollhardt, Phys. Rev. Lett. 62, 324 (1989).ADSCrossRefGoogle Scholar
  4. [4]
    A. Georges et al., Rev. Mod. Phys. 68, 13 (1996).MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    S. E. Barnes, J. Phys. F6, 1375 (1976); F7, 2637 (1977).ADSCrossRefGoogle Scholar
  6. [6]
    A. A. Abrikosov, Physics 2, 21 (1965).Google Scholar
  7. [7]
    P. Coleman, Phys. Rev. B29, 3035 (1984).Google Scholar
  8. [8]
    S. Elitzur, Phys. Rev. D 12, 3978 (1975).ADSCrossRefGoogle Scholar
  9. [9]
    G. Baym and L.P. Kadanoff, Phys. Rev. 124, 287 (1961); G. Baym, Phys. Rev. 127 1391 (1962).MathSciNetADSMATHCrossRefGoogle Scholar
  10. [10]
    J. Kroha, P. Hirschfeld, K. A. Muttalib, and P. Wölfle Solid State Comm. 83(12), 1003 (1992).ADSCrossRefGoogle Scholar
  11. [11]
    P. Nozières and C. T. De Dominicis, Phys. Rev. 178, 1073; 1084; 1097 (1969).Google Scholar
  12. [12]
    P. W. Anderson, Phys. Rev. Lett. 18, 1049 (1967).ADSCrossRefGoogle Scholar
  13. [13]
    K. D. Schotte and U. Schotte, Phys. Rev. 185, 509 (1969).MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    B. Menge and E. Müller-Hartmann, Z. Phys. B73, 225 (1988).ADSCrossRefGoogle Scholar
  15. [15]
    J. Kroha, P. Wölfle and T. A. Costi, Phys. Rev. Lett. 79, 261 (1997).ADSCrossRefGoogle Scholar
  16. [16]
    For a more detailed discussion see J. Kroha and P. Wölfle, Acta Phys. Pol. B 29, 3781 (1998); cond-mat# 9811074.ADSGoogle Scholar
  17. [17]
    T.A. Costi, P. Schmitteckert, J. Kroha and P. Wölfle, Phys. Rev. Lett. 73, 1275 (1994); Physica (Amsterdam) 235-240C, 2287 (1994).ADSCrossRefGoogle Scholar
  18. [18]
    S. Fujimoto, N. Kawakami and S.K. Yang, J.Phys.Korea 29, S136 (1996).Google Scholar
  19. [19]
    I. Affleck and A.W.W. Ludwig, Nucl. Phys. 352, 849 (1991); B360, 641 (1991); Phys. Rev. B 48, 7297 (1993).MathSciNetADSCrossRefGoogle Scholar
  20. [20]
    N. Grewe and H. Keiter, Phys. Rev B 24, 4420 (1981).ADSCrossRefGoogle Scholar
  21. [21]
    Y. Kuramoto, Z. Phys. B 53, 37 (1983); Y. Kuramoto and H. Kojima, ibid. 57, 95 (1984); Y. Kuramoto, ibid. 65, 29 (1986).ADSCrossRefGoogle Scholar
  22. [22]
    D. L. Cox and A. E. Ruckenstein, Phys. Rev. Lett. 71, 1613 (1993).ADSCrossRefGoogle Scholar
  23. [23]
    We are grateful to T. A. Costi for providing the NRG data.Google Scholar
  24. [24]
    N. Andrei, K. Furuya, J.H. Löwenstein, Rev.Mod.Phys. 55, 331 (1983).ADSCrossRefGoogle Scholar
  25. [25]
    N. Andrei, C. Destri, Phys. Rev. Lett. 52, 364 (1984).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • Johann Kroha
    • 1
  • Peter Wölfle
    • 1
  1. 1.Institut fiir Theorie der Kondensierten MaterieUniversität KarlsruheKarlsruheGermany

Personalised recommendations