Skip to main content

Diagrammatic Theory of Anderson Impurity Models: Fermi and Non-Fermi Liquid Behavior

  • Chapter
Open Problems in Strongly Correlated Electron Systems

Part of the book series: NATO Science Series ((NAII,volume 15))

  • 518 Accesses

Abstract

We review a recently developed method, based on a pseudoparticle representation of correlated electrons, to describe both Fermi liquid and non-Fermi liquid behavior in quantum impurity systems. The role of the projection onto the physical Hilbert space and the impossibility of slave boson condensation are discussed. By summing the leading coherent spin and charge fluctuation processes in a fully self-consistent and gauge invariant way one obtains the correct infrared behavior of the pseudoparticles. The temperature dependence of the spin susceptibility for the single channel and two-channel Anderson models is calculated and found to agree well with exact results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. C. Hewson, The Kondo Problem to Heavy Fermions (C.U.P., Cambridge, 1993).

    Book  Google Scholar 

  2. For a comprehensive overview see D. L. Cox and A. Zawadowski, Adv. Phys. 47, 599 (1998).

    Article  Google Scholar 

  3. W. Metzner and D. Vollhardt, Phys. Rev. Lett. 62, 324 (1989).

    Article  ADS  Google Scholar 

  4. A. Georges et al., Rev. Mod. Phys. 68, 13 (1996).

    Article  MathSciNet  ADS  Google Scholar 

  5. S. E. Barnes, J. Phys. F6, 1375 (1976); F7, 2637 (1977).

    Article  ADS  Google Scholar 

  6. A. A. Abrikosov, Physics 2, 21 (1965).

    Google Scholar 

  7. P. Coleman, Phys. Rev. B29, 3035 (1984).

    Google Scholar 

  8. S. Elitzur, Phys. Rev. D 12, 3978 (1975).

    Article  ADS  Google Scholar 

  9. G. Baym and L.P. Kadanoff, Phys. Rev. 124, 287 (1961); G. Baym, Phys. Rev. 127 1391 (1962).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. J. Kroha, P. Hirschfeld, K. A. Muttalib, and P. Wölfle Solid State Comm. 83(12), 1003 (1992).

    Article  ADS  Google Scholar 

  11. P. Nozières and C. T. De Dominicis, Phys. Rev. 178, 1073; 1084; 1097 (1969).

    Google Scholar 

  12. P. W. Anderson, Phys. Rev. Lett. 18, 1049 (1967).

    Article  ADS  Google Scholar 

  13. K. D. Schotte and U. Schotte, Phys. Rev. 185, 509 (1969).

    Article  MathSciNet  ADS  Google Scholar 

  14. B. Menge and E. Müller-Hartmann, Z. Phys. B73, 225 (1988).

    Article  ADS  Google Scholar 

  15. J. Kroha, P. Wölfle and T. A. Costi, Phys. Rev. Lett. 79, 261 (1997).

    Article  ADS  Google Scholar 

  16. For a more detailed discussion see J. Kroha and P. Wölfle, Acta Phys. Pol. B 29, 3781 (1998); cond-mat# 9811074.

    ADS  Google Scholar 

  17. T.A. Costi, P. Schmitteckert, J. Kroha and P. Wölfle, Phys. Rev. Lett. 73, 1275 (1994); Physica (Amsterdam) 235-240C, 2287 (1994).

    Article  ADS  Google Scholar 

  18. S. Fujimoto, N. Kawakami and S.K. Yang, J.Phys.Korea 29, S136 (1996).

    Google Scholar 

  19. I. Affleck and A.W.W. Ludwig, Nucl. Phys. 352, 849 (1991); B360, 641 (1991); Phys. Rev. B 48, 7297 (1993).

    Article  MathSciNet  ADS  Google Scholar 

  20. N. Grewe and H. Keiter, Phys. Rev B 24, 4420 (1981).

    Article  ADS  Google Scholar 

  21. Y. Kuramoto, Z. Phys. B 53, 37 (1983); Y. Kuramoto and H. Kojima, ibid. 57, 95 (1984); Y. Kuramoto, ibid. 65, 29 (1986).

    Article  ADS  Google Scholar 

  22. D. L. Cox and A. E. Ruckenstein, Phys. Rev. Lett. 71, 1613 (1993).

    Article  ADS  Google Scholar 

  23. We are grateful to T. A. Costi for providing the NRG data.

    Google Scholar 

  24. N. Andrei, K. Furuya, J.H. Löwenstein, Rev.Mod.Phys. 55, 331 (1983).

    Article  ADS  Google Scholar 

  25. N. Andrei, C. Destri, Phys. Rev. Lett. 52, 364 (1984).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kroha, J., Wölfle, P. (2001). Diagrammatic Theory of Anderson Impurity Models: Fermi and Non-Fermi Liquid Behavior. In: Bonča, J., Prelovšek, P., Ramšak, A., Sarkar, S. (eds) Open Problems in Strongly Correlated Electron Systems. NATO Science Series, vol 15. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0771-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0771-9_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6896-0

  • Online ISBN: 978-94-010-0771-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics