Skip to main content

Hematopoietic Stem Cell Chimerism and Tolerance Induction

  • Chapter
Therapeutic Immunosuppression

Part of the book series: Immunology and Medicine Series ((IMME,volume 29))

  • 116 Accesses

Abstract

The immune system of mammals evolved to discriminate between self- and nonself-antigens. This assures protection from foreign pathogens without eliciting autoimmunity. The process of self/nonself discrimination is primarily acquired via positive and negative selection of T cells during ontogeny in the thymus. Thymic tolerance to self-antigens, however, is not absolute and several peripheral mechanisms have also evolved to reinforce tolerance to self-antigens and promote immunity to foreign antigens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hoffmann JA, Kafatos FC, Janeway CA, Ezekowitz RA. Phylogenetic perspectives in innate immunity. Science. 1999; 284:1313–8.

    Article  PubMed  CAS  Google Scholar 

  2. Borghans JA, Noest AJ, De Boer RJ. How specific should immunological memory be? J Immunol. 1999; 163:569–75.

    PubMed  CAS  Google Scholar 

  3. Jenkins MK, Schwartz RH. Antigen presentation by chemically modified splenocytes induces antigen-specific T cell unresponsiveness in vitro and in vivo. J Exp Med. 1987; 165:302–19.

    Article  PubMed  CAS  Google Scholar 

  4. Lafferty KJ, Prowse SJ, Simeonovic CJ. Immunobiology of tissue transplantation: a return to the passenger leukocyte concept. Ann Rev Immunol. 1983; 1:143–73

    Article  CAS  Google Scholar 

  5. Davis MM, Bjorkman PJ. T cell antigen receptor genes and T cell recognition. Nature. 1988; 334:395–402.

    Article  PubMed  CAS  Google Scholar 

  6. Tan L, Turner J, Weiss A. Regions of the T cell receptor alpha and beta chains that are responsible for interaction with CD3. J Exp Med. 1991; 173:1247–56.

    Article  PubMed  CAS  Google Scholar 

  7. Kronenberg M, Siu G, Hood LH, Nikblah S. The molecular genetics of the T-cell antigen receptor and T-cell antigen recognition. Ann Rev Immunol. 1986; 4:529–91.

    Article  CAS  Google Scholar 

  8. Kronenberg M, Goverman J, Haars R, Malissen M, Kraig E, Phillips L, Delovitch T, Suciu-Foca N, Hood L. Rearrangement and transcription of the b-chain genes of the T-cell antigen receptor in different types of murine lymphocytes. Nature. 1985; 313:647–53.

    Article  PubMed  CAS  Google Scholar 

  9. Kappler JW, Roehm N, Marrack P. T cell tolerance by clonal elimination in the thymus. Cell. 1987; 49:273–80.

    Article  PubMed  CAS  Google Scholar 

  10. Kappler JW, Wade T, White J, Kushir E, Blackman M, Bill J, Roehm N, Marrack P. A T cell receptor V beta segment that imparts reactivity to a class II major histocompatibility complex product. Cell. 1987; 49:273–80.

    Article  PubMed  CAS  Google Scholar 

  11. Hugo P, Kappler JW, Godfrey DI, Marrack PC. Thymic epithelial cell lines that mediate positive selection can also induce thymocyte clonal deletion. J Immunol. 1994; 152:1022–31.

    PubMed  CAS  Google Scholar 

  12. Surh CD, Sprent J. T-cell apoptosis detected in situ during positive and negative selection in the thymus. Nature. 1994; 372:100–3.

    Article  PubMed  CAS  Google Scholar 

  13. Garcia KC, Degano M, Stanfield RL, Brunmark A, Jackson MR, Peterson PA, Teyton L, Wilson LA. An ab T cell receptor structure at 2.5 A0 and its orientation in the TCR-MHC complex. Science. 1996; 274:209–19.

    Article  PubMed  CAS  Google Scholar 

  14. Ding YH, Baker BM, Garboczi DN, Biddison WE, Wiley DC. Four A6-TCR/peptide/ HLA-A2 structures that generate very different T cell signals are nearly identical. Immunity. 1999; 11:45–56.

    Article  PubMed  CAS  Google Scholar 

  15. Patten PA, Rock EP, Sonoda T, Fazekas de St.Groth B, Jorgenson JL, Davis MM. Transfer of putative complementarity-determining region loops of T cell receptor V domains confers toxin reactivity but not peptide/MHC specificity. J Immunol. 1993; 150:2281–94.

    PubMed  CAS  Google Scholar 

  16. Nalefski EA, Wong JGP, Rao A. Amino acid substitutions in the first complementarity-determining region of a murine T-cell receptor alpha chain affect antigenmajor histocompatibility complex recognition. J Immunol. 1990; 265:8842–6.

    CAS  Google Scholar 

  17. Bentley GA, Boulot G, Karjalainen K, Mariuzza RA. Crystal structure of the b chain of a T cell antigen receptor. Science. 1995; 267:1984–7.

    Article  PubMed  CAS  Google Scholar 

  18. Gold DP, Offner H, Sun D, Wüey S, Vandenbark AA, Wilson DB. Analysis of T cell receptor beta chains in Lewis rats with experimental allergic encephalomyelitis: conserved complementary determining region 3. J Exp Med. 1991; 174:14677–1476.

    Article  Google Scholar 

  19. Jorgensen JL, Esser U, Fazekas de St.Groth B, Reay PA, Davis MM. Mapping T cell receptor-peptide contacts by variant peptide immunization of single-chain transgenics. Nature. 1992; 355:224–30.

    Article  PubMed  CAS  Google Scholar 

  20. Schwartz RH. Costimulation of T lymphocytes: the role of CD28, CTLA-4, and B7/BB1 in interleukin-2 production and immunotherapy. Cell. 1992; 71:1065–8.

    Article  PubMed  CAS  Google Scholar 

  21. Noel PJ, Boise LH, Green JM, Thompson CB. CD28 costimulation prevents cell death during primary T cell activation. J Immunol. 1996; 157:636–42.

    PubMed  CAS  Google Scholar 

  22. Radvanyi LG, Shi YF, Vaziri H, Sharma A, Dhala R, Mills GB, Miller RG. CD28 costimulation inhibits TCR-induced apoptosis during a primary T cell response. J Immunol. 1996; 156:1788–98.

    PubMed  CAS  Google Scholar 

  23. Lucas PJ, Negishi I, Nakayama K, Fields LE, Loh DY. Naive CD28-deficient T cells can initiate but not sustain an in vitro antigen-specific immune response. J Immunol. 1995; 154:5757–68.

    PubMed  CAS  Google Scholar 

  24. Parijs LV, Ibraghimov A, Abbas AK. The roles of costimulation and Fas in T cell apoptosis and peripheral tolerance. Immunity. 1996; 4:321–6.

    Article  PubMed  Google Scholar 

  25. Lenschow DJ, Zeng Y, Thistlewaite JR, Montag A, Brady W, Gibson MG, Linsley PS, Bluestone JA. Long-term survival of xenogeneic pancreatic islet grafts induced by CTLA4Ig. Science. 1992; 257:789–95.

    Article  PubMed  CAS  Google Scholar 

  26. Akalin E, Chandraker A, Russell ME, Turka LA, Hancock WW, Sayegh MH. CD28-B7 T cell costimulatory blockade by CTLA4Ig in the rat renal allograft model: inhibition of cell-mediated and humoral immune responses in vivo. Transplantation. 1996; 62:1942–5.

    Article  PubMed  CAS  Google Scholar 

  27. Lenschow DJ, Walunas TL, Bluestone JA. CD28/B7 system of T cell costimulation. Ann Rev Immunol. 1996; 14:233–58.

    Article  CAS  Google Scholar 

  28. Lenschow DJ, Herold KC, Rhee L, Patel B, Koons A, Qin HY, Fuchs E, Singh B, Thompson CB, Bluestone JA. CD28/B7 Regulation of Thl and Th2 subsets in the development of autoimmune diabetes. Immunity. 1996; 5:285–93.

    Article  PubMed  CAS  Google Scholar 

  29. Judge TA, Wu Z, Zheng XG, Sharpe AH, Sayegh MH, Turka LA. The role of CD80, CD86, and CTLA4 in alloimmune responses and the induction of long-term allograft survival. J Immunol. 1999; 162:1947–51.

    PubMed  CAS  Google Scholar 

  30. Denton MD, Magee CC, Sayegh MH. Immunosuppressive strategies in transplantation. Lancet. 1999; 353:1083–91.

    Article  PubMed  CAS  Google Scholar 

  31. Sha WC, Nelson CA, Newberry RD, Kranz DM, Russell JH, Loh DY. Positive and negative selection of an antigen receptor on T cells in transgenic mice. Nature. 1988; 336:73–6.

    Article  PubMed  CAS  Google Scholar 

  32. Alam SM, Travers PJ, Wung JL, Nasholds W, Redpath S, Jameson SC, Gascoigne NRJ. T-cell-receptor affinity and thymocyte positive selection. Nature. 1996; 381:616–20.

    Google Scholar 

  33. Ashton-Rickardt PG, Van Kaer L, Schumacher TNM, Ploegh HL, Tonegawa S. Peptide contributes to the specificity of positive selection of CD8+ T cells in the thymus. Cell. 1993; 73:1041–9.

    Article  PubMed  CAS  Google Scholar 

  34. Bill J, Palmer E. Positive selection of CD4+ T cells mediated by MHC class II-bearing stromal cell in the thymic cortex. Nature. 1989; 341:649–54.

    Article  PubMed  CAS  Google Scholar 

  35. Baldwin KK, Trenchak BP, Altman JD, Davis MM. Negative selection of T cells occurs throughout thymic development. J Immunol. 1999; 163:689–98.

    PubMed  CAS  Google Scholar 

  36. Sebzda E, Wallace VA, Mayer J, Yeung RS, Mak TW, Ohashi PS. Positive and negative thymocyte selection induced by different concentrations of a single peptide. Science. 1994; 263:1615–8.

    Article  PubMed  CAS  Google Scholar 

  37. Hogquist KA, Jameson SC, Heath WR, Howard JL, Bevan MJ, Carbone FR. T cell receptor antagonist peptides induce positive selection. Cell. 1994; 76:17–27.

    Article  PubMed  CAS  Google Scholar 

  38. Ashton-Rickardt PG, Bandeira A, Delaney JR, Van Kaer L, Pircher HP, Zinkernagel RM, Tonegawa S. Evidence for a differential avidity model of T cell selection in the thymus. Cell. 1994; 76:651–63.

    Article  PubMed  CAS  Google Scholar 

  39. Lyons DS, Lieberman SA, Hampl J, Boniface JJ, Chien Y, Berg LJ, Davis MM. A TCR binds to antagonist ligands with lower affinities and faster dissociation rates than to agonists. Immunity. 1996; 5:53–61.

    Article  PubMed  CAS  Google Scholar 

  40. Laufer TM, Glimcher LH, Lo D. Using thymus anatomy to dissect T cell repertoire selection. Semin Immunol. 1999; 11:65–70.

    Article  PubMed  CAS  Google Scholar 

  41. Finkel TH, Cambier JC, Kubo RT, Born WK, Marrack P, Kappler JW. The thymus has two functionally distinct populations of immature alpha beta + T cells: one population is deleted by ligation of alpha beta TCR. Cell. 1989; 58:1047–54.

    Article  PubMed  CAS  Google Scholar 

  42. Guidos CJ, Danska JS, Fathman CG, Weissman IL. T cell receptor-mediated nega-tive selection of autoreactive T lymphocyte precursors occurs after commitment to the CD4 or CD8 lineages. J Exp Med. 1990; 172:835–45.

    Article  PubMed  CAS  Google Scholar 

  43. Soldevila G, Geiger T, Flavell RA. Breaking immunologic ignorance to an antigenic peptide of simian virus 40 large T antigen. J Immunol. 1995; 155:5590–600.

    PubMed  CAS  Google Scholar 

  44. Ohashi PS, Oehen S, Buerki K, Pircher H, Ohashi CT, Odermatt B, Malissen B, Zinkernagel RM, Hengartner H. Ablation of “tolerance” and induction of diabetes by virus infection in viral antigen transgenic mice. Cell. 1991; 65:305–17.

    Article  PubMed  CAS  Google Scholar 

  45. Coulombe M, Gill RG. T lymphocyte indifference to extrathymic islet allografts. J Immunol. 1996; 156:1998–2003.

    PubMed  CAS  Google Scholar 

  46. Refaeli Y, Van Parijs L, London CA, Tschopp J, Abbas AK. Biochemical mechanisms of IL-2-regulated Fas-mediated T cell apoptosis. Immunity. 1998; 8:615–23.

    Article  PubMed  CAS  Google Scholar 

  47. Van Parijs L, Biuckians A, Ibragimov A, Alt FW, Willerford DM, Abbas AK. Functional responses and apoptosis of CD25 (IL-2R alpha)-deficient T cells expressing a transgenic antigen receptor. J Immunol. 1997; 158:3738–45.

    PubMed  Google Scholar 

  48. Van Parijs L, Perez VL, Abbas AK. Mechanisms of peripheral T cell tolerance. Novartis Found Symp. 1998; 215:5–14.

    PubMed  Google Scholar 

  49. Suda T, Tanaka M, Miwa K, Nagata S. Apoptosis of mouse naive T cells induced by recombinant soluble Fas ligand and activation-induced resistance to Fas ligand. J Immunol. 1996; 157:3918–24.

    PubMed  CAS  Google Scholar 

  50. Suda T, Hashimoto H, Tanaka M, Ochi T, Nagata S. Membrane Fas ligand kills human peripheral blood T lymphocytes, and soluble Fas ligand blocks the killing. J Exp Med. 1997; 186:2045–50.

    Article  PubMed  CAS  Google Scholar 

  51. Burrows SR, Silins SL, Moss DJ, Khanna R, Misko IS, Argaet VP. T cell receptor repertoire for a viral epitope in humans is diversified by tolerance to a background major histocompatibility complex antigen. J Exp Med. 1995; 182:1703–15.

    Article  PubMed  CAS  Google Scholar 

  52. Christensen JP, Stenvang JP, Marker O, Thomsen AR. Characterization of virusprimed CD8+ T cells with a type 1 cytokine profile. Int Immunol. 1996; 8:1453–61

    Article  PubMed  CAS  Google Scholar 

  53. Kyburz D, Aichele P, Speiser DE, Hengartner H, Zinkernagel RM, Pircher H. T cell immunity after a viral infection versus T cell tolerance induced by soluble viral peptides. Eur J Immunol. 1993; 23:1956–62.

    Article  PubMed  CAS  Google Scholar 

  54. Kabelitz D, Oberg HH, Pohl T, Pechhold K. Antigen-induced death of mature T lymphocytes: analysis by flow cytometry. Immunol Rev. 1994; 142:157–74.

    Article  PubMed  CAS  Google Scholar 

  55. Pelfrey CM, Tranquill LR, Boehme SA, McFarland HF, Lenardo MJ. Two mechanisms of antigen-specific apoptosis of myelin basic protein (MBP)-specific T lymphocytes derived from multiple sclerosis patients and normal individuals. J Immunol. 1995; 154:6191–202.

    PubMed  CAS  Google Scholar 

  56. Russell JH, Manning DE, McCulley DE, Meleedy-Rey P. Antigen as a positive and negative regulator of proliferation in cytotoxic lymphocytes. A model for the differential regulation of proliferation and lytic activity. J Immunol. 1988; 140:1796–801.

    CAS  Google Scholar 

  57. Pearson CI, Gautam AM, Rulifson IC, Liblau RS, McDevitt HO. A small number of residues in the class II molecule I-Au confer the ability to bind the myelin basic protein peptide Ac1-11. Proc Natl Acad Svi U S A. 1999; 96:197–202.

    Article  CAS  Google Scholar 

  58. Sloan-Lancaster J, Evavold BD, Allen PM. Induction of T-cell anergy by altered T-cell-receptor ligand on live antigen-presenting cells. Nature. 1993; 363:156–9.

    Article  PubMed  CAS  Google Scholar 

  59. Sloan-Lancaster J, Shaw AS, Rothbard JB, Allen PM. Partial T cell signaling: altered phospho-zeta and lack of zap70 recruitment in APL-induced T cell anergy. Cell. 1994; 79:913–22.

    Article  PubMed  CAS  Google Scholar 

  60. Rocha B, Grandien A, Freitas AA. Anergy and exhaustion are independent mechanisms of peripheral T cell tolerance. J Exp Med. 1995; 181:993–1003.

    Article  PubMed  CAS  Google Scholar 

  61. Schwartz RH. A cell culture model for T lymphocyte clonal anergy. Science. 1990; 248:1349–56.

    Article  PubMed  CAS  Google Scholar 

  62. Malvey EN, Telander DG, Vanasek TL, Mueller DL. The role of clonal anergy in the avoidance of autoimmunity: inactivation of autocrine growth without loss of effector function. Immunol Rev. 1998; 165:301–18.

    Article  PubMed  CAS  Google Scholar 

  63. Itoh M, Takahashi T, Sakaguchi N, Kuniyasu Y, Shimizu J, Otsuka F, Sakaguchi S. Thymus and autoimmunity: production of CD25+CD4+ naturally anergic and suppressive T cells as a key function of the thymus in maintaining immunologic self-tolerance. J Immunol. 1999; 162:5317–26.

    PubMed  CAS  Google Scholar 

  64. Rellahan BL, Jones LA, Kruisbeek AM, Fry AM, Matis LA. In vivo induction of anergy in peripheral V beta 8+ T cells by staphylococcal enterotoxin B. J Exp Med. 1990; 172:1091–100.

    Article  PubMed  CAS  Google Scholar 

  65. Deeths MJ, Kedl RM, Mescher MF. CD8+ T cells become nonresponsive (anergic) following activation in the presence of costimulation. J Immunol. 1999; 163:102–10.

    PubMed  CAS  Google Scholar 

  66. MacDonald HR, Baschieri S, Lees RK. Clonal expansion precedes anergy and death of V beta 8+ peripheral T cells responding to staphylococcal enterotoxin B in vivo. Eur J Immunol. 1991; 21:1963–6.

    Article  PubMed  CAS  Google Scholar 

  67. Smith JA, Tso JY, Clark MR, Cole MS, Bluestone JA. Nonmitogenic anti-CD3 monoclonal antibodies deliver a partial T cell receptor signal and induce clonal anergy. J Exp Med. 1997; 185:1413–22.

    Article  PubMed  CAS  Google Scholar 

  68. Ildstad ST, Sachs DH. Reconstitution with syngeneic plus allogeneic or xenogeneic bone marrow leads to specific acceptance of allografts or xenografts. Nature. 1984; 307:168–70.

    Article  PubMed  CAS  Google Scholar 

  69. Li H, Kaufman CL, Boggs SS, Johnson PC, Patrene KD, Ildstad ST. Mixed allogeneic chimerism induced by a sublethal approach prevents autoimmune diabetes and reverses insulitis in nonobese diabetic (NOD) mice. J Immunol. 1996; 156:380–8.

    PubMed  CAS  Google Scholar 

  70. Sachs DH, Sykes M, Greenstein JL, Cosimi AB. Tolerance and xenograft survival. Nat Med. 1995; 1:969

    Article  PubMed  CAS  Google Scholar 

  71. Sharabi Y, Aksentijevich I, Sundt TMI, Sachs DH, Sykes M. Specific tolerance induction across a xenogeneic barrier: production of mixed rat/mouse lymphohematopoietic chimeras using a nonlethal preparative regimen. J Exp Med. 1990; 172:195–202.

    Article  PubMed  CAS  Google Scholar 

  72. Zhao Y, Swenson K, Sergio JJ, Arn JS, Sachs DH, Sykes M. Skin graft tolerance across a discordant xenogeneic barrier. Nat Med. 1996; 2:1211–6.

    Article  PubMed  CAS  Google Scholar 

  73. Ildstad ST, Wren SM, Boggs SS, Hronakes ML, Vecchini F, Van den Brink MRM. Cross-species bone marrow transplantation: evidence for tolerance induction, stem cell engraftment, and maturation of T lymphocytes in a xenogeneic stromal environment (rat—>mouse). J Exp Med. 1991; 174:467–78.

    Article  PubMed  CAS  Google Scholar 

  74. Owen RD. Immunogenic consequences of vascular anastomoses between bovine twins. Science. 1945; 102:400.

    Article  PubMed  CAS  Google Scholar 

  75. Billingham RE, Lamphin HG, Medawar PB, Williams HL. Tolerance of homografts, twin diagnosis and the freemartin conditions in cattle. Heredity. 1952; 6:201

    Article  Google Scholar 

  76. Billingham RE, Brent L, Medawar PB. Actively acquired tolerance of foreign cells. Nature. 1953; 172:603–6.

    Article  PubMed  CAS  Google Scholar 

  77. Main JM, Prehn RT. Fate of skin homografts in x-irradiated mice treated with homologous marrow. J Natl Cancer Inst. 1957; 19:1053.

    PubMed  CAS  Google Scholar 

  78. Wood ML, Monaco AP, Gozzo JJ, Liégeois A. Use of homozygous allogeneic bone marrow for induction of tolerance with antilymphocyte serum: dose and timing. Transplant Proc. 1971; 3:676–9.

    PubMed  CAS  Google Scholar 

  79. Ildstad ST, Wren SM, Bluestone JA, Barbieri SA, Sachs DH. Characterization of mixed allogeneic chimeras. Immunocompetence, in vitro reactivity, and genetic specificity of tolerance. J Exp Med. 1985; 162:231–44.

    Article  PubMed  CAS  Google Scholar 

  80. Ildstad ST, Wren SM, Bluestone JA, Barbieri SA, Stephany D, Sachs DH. Effect of selective T cell depletion of host and/or donor bone marrow on lymphopoietic repopulation, tolerance, and graft-vs-host disease in mixed allogeneic chimeras( B10 + B10.D2—> B10). J Immunol. 1986; 136:28–33.

    PubMed  CAS  Google Scholar 

  81. Markus PM, Selvaggi G, Cai X, Fung JJ, Starzl TE. Induction of donor-specific transplantation tolerance to skin and cardiac allografts using mixed chimerism in (A + B—>A) in rats. Cell Transplant. 1993; 2:345–53.

    PubMed  CAS  Google Scholar 

  82. Orloff MS, DeMara EM, Coppage ML, Leong N, Zuo XJ, Prehn J, Jordan SC. Alterations of the interleukin-4 pathway in production of tolerance by mixed hematopoietic chimerism. Surgery. 1995; 118:212–9.

    Article  PubMed  CAS  Google Scholar 

  83. Ildstad ST, Wren SM, Oh E, Hronakes ML. Mixed allogeneic reconstitution (A+B-->A) to induce donor-specific transplantation tolerance. Transplantation. 1991; 51:1262–7.

    Article  PubMed  CAS  Google Scholar 

  84. Aolson YL, Wren SM, Schuchert MJ, Patrene KD, Johnson PC, Boggs SS, Ildstad ST. A nonlethal conditioning approach to achieve durable multilineage mixed chimerism and tolerance across major, minor, and hematopoietic histocompatibility barriers. J Immunol. 1995; 155:4179–88.

    Google Scholar 

  85. Ammie JS, Li S, Zeevi A, Demetris AJ, Ildstad ST, Pham SM. Tacrolimus-based partial conditioning produces stable mixed lymphohematopoietic chimerism and tolerance for cardiac allografts. Circulation. 1998; 98:11163–11168

    Google Scholar 

  86. Oster RD, Fan L, Niepp M, Kaufman C, McCalmont T, Ascher N, Ildstad S, Anthony JP. Donor-specific tolerance induction in composite tissue allografts. Am J Surg. 1998; 176:418–21.

    Article  Google Scholar 

  87. de Vries-van der Zwan A, Besseling AC, van Twuyver E, Boog CJ, de Waal LP. A substantial level of mixed chimerism is required for the induction of permanent transplantation tolerance. Transpl Immunol. 1996; 4:232–40.

    Article  PubMed  Google Scholar 

  88. Nomoto K, Yung-Yun K, Omoto K, Umesue M, Murakami Y, Matsuzaki G. Tolerance induction in a fully allogeneic combination using anti-T cell receptor-alpha beta monoclonal antibody, low dose irradiation, and donor bone marrow transfusion. Transplantation. 1995; 59:395–401.

    PubMed  CAS  Google Scholar 

  89. Tomita Y, Sachs DH, Khan A, Sykes M. Additional monoclonal antibody (mAB) injections can replace thymic irradiation to allow induction of mixed chimerism and tolerance in mice receiving bone marrow transplantation after conditioning with anti-T cell mABs and 3-Gy whole body irradiation. Transplantation. 1996; 61:469–77.

    Article  PubMed  CAS  Google Scholar 

  90. Sharabi Y, Sachs DH. Mixed chimerism and permanent specific transplantation tolerance induce by a nonlethal preparative regimen. J Exp Med. 1989; 169:493–502.

    Article  PubMed  CAS  Google Scholar 

  91. Hewitt CW, Ramsamooj R, Patel MP, Yazdi B, Achauer BM, Black KS. Developement of stable mixed T cell chimerism and transplantation tolerance without immune modulation in recipients of vascularized bone marrow allografts. Transplantation. 1990; 50:766–72.

    Article  PubMed  CAS  Google Scholar 

  92. Wong W, Monis PJ, Wood KJ. Syngeneic bone marrow expressing a single donor class I MHC molecule permits acceptance of a fully allogeneic cardiac allograft. Transplantation. 1996; 62:1462–8.

    Article  PubMed  CAS  Google Scholar 

  93. Pearson TC, Alexander DZ, Hendrix R, Elwood ET, Linsley PS, Winn KJ, Larsen CP. CTLA4-Ig plus bone marrow induces long-term allograft survival and donor specific unresponsiveness in the murine model. Evidence for hematopoietic chimerism. Transplantation. 1996; 61:997–1004.

    CAS  Google Scholar 

  94. Wekerle T, Sayegh MH, Hill J, Zhao Y, Chandraker A, Swenson KG, Zhao G, Sykes M. Extrathymic T cell deletion and allogeneic stem cell engraftment induced with costimulatory blockade is followed by central T cell tolerance. J Exp Med. 1998; 187:2037–44.

    Article  PubMed  CAS  Google Scholar 

  95. Kaufman CL, Colson YL, Wren SM, Watkins S, Simmons RL, Ildstad S. Phenotypic characterization of a novel bone marrow-derived cell that facilitates engraftment of allogeneic bone marrow stem cells. Blood. 1994; 84:2436–46.

    PubMed  CAS  Google Scholar 

  96. McDaniel DO, Naftilan J, Hulvey K, Shaneyfelt S, Lemons JA, Lagoo-Deenadaya-Ian S, Hudson S, Diethelm AG, Barber WH. Peripheral blood chimerism in renal allograft recipients transfused with donor bone marrow. Transplantation. 1994; 57:852–6.

    Article  PubMed  CAS  Google Scholar 

  97. Kawai T, Cosimi AB, Colvin RB, Powelson J, Eason J, Kozlowski T, Sykes M, Monroy R, Tanaka M, Sachs DH. Mixed allogeneic chimerism and renal allograft tolerance in cynomolgus monkeys. Transplantation. 1995; 59:256–62.

    PubMed  CAS  Google Scholar 

  98. Myburgh JA, Smit JA, Hill RR, Browde S. Transplantation tolerance in primates following total lymphoid irradiation and allogeneic bone marrow injection. II. Renal allografts. Transplantation. 1980; 29:405–8.

    CAS  Google Scholar 

  99. Moses RD, On KS, Bacher JD, Sachs DH, Clark RE, Gress RE. Cardiac allograft survival across major histocompatibility complex barriers in the rhesus monkey following T lymphocyte-depleted autologous marrow transplantation. II. Prolonged allograft survival with extensive marrow T cell depletion. Transplantation. 1989; 47:435–44.

    CAS  Google Scholar 

  100. Yang YG, de Goma E, Ohdan H, Bracy JL, Xu Y, Iacomini J, Thall AD, Sykes M. Tolerization of anti-Galalphal-3Gal natural antibody-forming B cells by induction of mixed chimerism. J Exp Med. 1998; 187:1335–42.

    Article  PubMed  CAS  Google Scholar 

  101. Huang Y, Ildstad ST, Neipp M, Shirwan H. Mouse xenoantigens contribute to rat T-cell V beta repertoire generation in mixed xenogeneic bone marrow chimeras. Immunology. 2000; 100:317–8.

    Article  PubMed  CAS  Google Scholar 

  102. Colson YL, Tripp RA, Doherty PC, Wren SM, Neipp M, Abou EE, Ildstad ST. Antiviral cytotoxic activity across a species barrier in mixed xenogeneic chimeras: functional restriction to host MHC. J Immunol. 1998; 160:3790–6.

    PubMed  CAS  Google Scholar 

  103. Platt JL, Vercellotti GM, Dalmasso AP, Matas AJ, Bolman Rm, Najaríanj S, Bach FH. Transplantation of discordant xenografts: a review of progress. Immunol Today. 1990; 11:450–7.

    Article  PubMed  CAS  Google Scholar 

  104. Ohdan H, Yang YG, Shimizu A, Swenson KG, Sykes M. Mixed chimerism induced without lethal conditioning prevents T cell-and anti-Gal alpha l,3Gal-mediated graft rejection. J Clin Invest. 1999; 104:281–90.

    Article  PubMed  CAS  Google Scholar 

  105. Aksentijevich I, Sachs DH, Sykes M. Humoral tolerance in xenogeneic BMT recipients conditioned by a nonmyeloablative regimen. Transplantation. 1992; 53:1108–14.

    Article  PubMed  CAS  Google Scholar 

  106. Kozlowski T, Monroy R, Xu Y, Glaser R, Awwad M, Cooper DK, Sachs DH. Anti-Gal(alpha)l-3Gal antibody response to porcine bone marrow in unmodified baboons and baboons conditioned for tolerance induction. Transplantation. 1998; 66:176–82.

    Article  PubMed  CAS  Google Scholar 

  107. Sablinski T, Gianello PR, Bailin M, Bergen KS, Emery DW, Fishman JA, Foley A, Hatch T, Hawley RJ, Kozlowski T, Lorf T, Meehan S, Monroy R, Powelson JA, Colvin RB, Cosimi AB, et al. Pig to monkey bone marrow and kidney xenotransplantation. Surgery. 1997; 121:381–91.

    Article  PubMed  CAS  Google Scholar 

  108. Kozlowski T, Shimizu A, Lambrigts D, Yamada K, Fuchimoto Y, Glaser R, Monroy R, Xu Y, Awwad M, Colvin RB, Cosimi AB, Robson SC, Fishman J, Spitzer TR, Cooper DK, Sachs DH. Porcine kidney and heart transplantation in baboons undergoing a tolerance induction regimen and antibody adsorption. Transplantation. 1999; 67:18–30.

    Article  PubMed  CAS  Google Scholar 

  109. Fontes P, Rogers J, Rao AS, Trueco M, Zeevi A, Ricordi C, Fung JJ, Starzl TE. Evidence for engraftment of human bone marrow cells in non-lethally irradiated baboons. Transplantation. 1997; 64:1595–8.

    Article  PubMed  CAS  Google Scholar 

  110. Allen MD, Weyhrich J, Gaur L, Akimoto H, Hall J, Dalesandro J, Sai S, Thomas R, Nelson KA, Andrews RG. Prolonged allogeneic and xenogeneic microchimerism in unmatched primates without immunosuppression by intrathymic implantation of CD34+ donor marrow cells. Cell Immunol. 1997; 181:127–38.

    Article  PubMed  CAS  Google Scholar 

  111. Emery DW, Holley K, Sachs DH. Enhancement of swine progenitor chimerism in mixed swine/human bone marrow cultures with swine cytokines. Exp Hematol. 1999; 27:1330–7.

    Article  PubMed  CAS  Google Scholar 

  112. Sablinski T, Emery DW, Monroy R, Hawley RJ, Xu Y, Gianello P, Lorf T, Kozlowski T, Bailin M, Cooper DK, Cosimi AB, Sachs DH. Long-term discordant xenogeneic (porcine-to-primate) bone marrow engraftment in a monkey treated with porcinespecific growth factors. Transplantation. 1999; 67:972–7.

    Article  PubMed  CAS  Google Scholar 

  113. Kawaharada N, Shears LL, Li S, Pham SM. Mixed hematopoietic chimerism prevents allograft vasculopathy. J Heart Lung Transplant. 1999; 18:532–41.

    Article  PubMed  CAS  Google Scholar 

  114. Orloff MS, DeMara EM, Coppage ML, Leong N, Fallon MA, Sickel J, Zuo XJ, Prehn J, Jordan SC. Prevention of chronic rejection and graft arteriosclerosis by tolerance induction. Transplantation. 1995; 59:282–8.

    PubMed  CAS  Google Scholar 

  115. Colson YL, Zadach K, Nalesnik M, Ildstad ST. Mixed allogeneic chimerism in the rat—Donor-specific transplantation tolerance without chronic rejection for primarily vascularized cardiac allografts. Transplantation. 1995; 60:971–80.

    PubMed  CAS  Google Scholar 

  116. Manilay JO, Pearson DA, Sergio JJ, Swenson KG, Sykes M. Intrathymic deletion of alloreactive T cells in mixed bone marrow chimeras prepared with a nonmyeloablative conditioning regimen. Transplantation. 1998; 66:96–102.

    Article  PubMed  CAS  Google Scholar 

  117. Taniguchi H, Abe M, Shirai T, Fukao K, Nakauchi H. Reconstitution ratio is critical for alloreactive T cell deletion and skin graft survival in mixed bone marrow chimeras. J Immunol. 1995; 155:5631–6.

    PubMed  CAS  Google Scholar 

  118. Colson YL, Lange J, Fowler K, Ildstad ST. Mechanism for cotolerance in nonlethally conditioned mixed chimeras: negative selection of the Vβ T-cell receptor repertoire by both host and donor bone marrow-derived cells. Blood. 1996; 88:4601–10.

    PubMed  CAS  Google Scholar 

  119. Ildstad ST, Wren SM, Boggs SS, Hronakes ML, Vecchini F, Van den Brink MRM. Cross-species bone marrow transplantation: evidence for tolerance induction, stem cell engraftment, and maturation of T lymphocytes in a xenogeneic stromal environment (rat—>mouse). J Exp Med. 1991; 174:467–78.

    Article  PubMed  CAS  Google Scholar 

  120. Tomita Y, Khan A, Sykes M. Role of intrathymic clonal deletion and peripheral anergy in transplantation in mice conditioned with a nonmyeloablative regimen. J Immunol. 1994; 153:1087–98.

    PubMed  CAS  Google Scholar 

  121. Tomita Y, Khan A, Sykes M. Mechanism by which additional monoclonal antibody (mAB) injections overcome the requirement for thymic irradiation to achieve mixed chimerism in mice receiving bone marrow transplantation after conditioning with anti-T cell mABs and 3-Gy whole body irradiation. Transplantation. 1996; 61:477–85.

    Article  PubMed  CAS  Google Scholar 

  122. Nikolic B, Lei H, Pearson DA, Sergio JJ, Swenson KG, Sykes M. Role of intrathymic rat class 11+ cells in maintaining deletional tolerance in xenogeneic rat->mouse bone marrow chimeras [published erratum appears in Transplantation 1999 Jan 27;67(2):340]. Transplantation. 1998; 65:1216–24.

    Article  PubMed  CAS  Google Scholar 

  123. Colson YL, AY AE-E, Gaines BA, Ildstad ST. Positive and negative selection of alpha/beta TCR+ T cells in thymectomized adult radiation bone marrow chimeras. Transplantation. 1999; 68:403–10.

    Article  PubMed  CAS  Google Scholar 

  124. Ju S-T, Panka DJ, Cul H, Ettinger R, El-Khatib M, Sherr DH, Stanger BZ, Marshak-Rothstein A. Fas(CD95)/FasL interactions required for programmed cell death after T-cell activation. Nature. 1996; 373:444–8.

    Article  Google Scholar 

  125. Kabelitz D, Pohl T, Pechhold K. Activation-induced cell death (apoptosis) of mature peripheral T lymphocytes. Immunol Today. 1993; 14:338–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Shirwan, H., Ildstad, S.T. (2001). Hematopoietic Stem Cell Chimerism and Tolerance Induction. In: Thomson, A.W. (eds) Therapeutic Immunosuppression. Immunology and Medicine Series, vol 29. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0765-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0765-8_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3821-8

  • Online ISBN: 978-94-010-0765-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics