Skip to main content

Costimulatory Blockade as a Therapeutic Regimen for Prolonging Allograft Survival and Inducing Tolerance: An Overview of Recent Research

  • Chapter
Therapeutic Immunosuppression

Part of the book series: Immunology and Medicine Series ((IMME,volume 29))

  • 111 Accesses

Abstract

T lymphocytes are essential components of the immune response to allografts. Therefore, T lymphocytes are the target for almost all of the therapeutic regimens currently employed to prevent or control the immune response to the allograft. Indeed, monoclonal antibodies targeting the T cell antigen receptor (TCR) and the receptor for interleukin-2 (IL-2) have proved useful for controlling the acute immune response to the allograft. Furthermore, inhibitors of TCR signal transduction pathways such as cyclosporin A (CsA) and FK506, inhibitors of the serine/threonine phosphatase calcineurin, have revolutionized the short-term survival rate of allografts. However, despite the marked increase in the survival rate of allografts past one year, no significant increase in long-term allograft survival has been achieved. Furthermore, because the currently employed therapeutic regimens do not discriminate between allograft-specific T cells and allograft-nonspecific T cells, such regimens induce a general and a marked immunosuppression that may render the patient susceptible to infection and to tumor progression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berridge MJ. Lymphocyte activation in health and disease. Crit Rev Immunol 1997;17:155–178.

    PubMed  CAS  Google Scholar 

  2. Clevers H, Alarcon B, Wileman T, Terhorst C. The T cell receptor/CD3 complex: a dynamic protein ensemble. Annu Rev Immunol 1988;6:629–662.

    PubMed  CAS  Google Scholar 

  3. Alberolaila J, Takaki S, Kerner JD, Perlmutter RM. Differential signaling by lymphocyte antigen receptors. Ann Rev Immunol 1997;15:125–154.

    CAS  Google Scholar 

  4. Qian D, Weiss A. T cell antigen receptor signal transduction. Curr Opin Cell Biol 1997;9:205–212.

    PubMed  CAS  Google Scholar 

  5. Cantrell D. T cell antigen receptor signal transduction pathways. Ann Rev Immunol 1996;14:259–274.

    CAS  Google Scholar 

  6. Irving BA, Chan AC, Weiss A. Functional characterization of a signal transducing motif present in the T cell antigen receptor zeta chain. J Exp Med 1993; 177: 1093–1103.

    PubMed  CAS  Google Scholar 

  7. Su B, Karin M. Mitogen-activated protein kinase cascades and regulation of gene expression. Curr Opin Immunol 1996;8:402–411.

    PubMed  CAS  Google Scholar 

  8. Schaeffer HJ, Weber MJ. Mitogen-activated protein kinases: Specific messages from ubiquitous messengers. Mol Cell Biol 1999;19:2435–2444.

    PubMed  CAS  Google Scholar 

  9. Klee CB, Ren H, Wang XT. Regulation of the calmodulin-stimulated protein phosphatase, calcineurin. J Biol Chem 1998;273:13367–13370.

    PubMed  CAS  Google Scholar 

  10. Crabtree GR. Generic signals and specific outcomes: Signaling through Ca2+, calcineurin, and NF-AT. Cell 1999;96:611–614.

    PubMed  CAS  Google Scholar 

  11. Crabtree GR. Contingent genetic regulatory events in T lymphocyte activation. Science 1989;243:355–361.

    PubMed  CAS  Google Scholar 

  12. Hanissian SH, Frangakis M, Bland MM, Jawahar S, Chatila TA. Expression of a Ca2+/calmodulin-dependent protein kinase, CaM kinase-Gr, in human T lymphocytes. Regulation of kinase activity by T cell receptor signaling. J Biol Chem 1993;268:20055–20063.

    PubMed  CAS  Google Scholar 

  13. Park IK, Soderling TR. Activation of Ca2+/calmodulin-dependent protein kinase (CaM-kinase) IV by CaM-kinase kinase in Jurkat T lymphocytes. J Biol Chem 1995;270:30464–30469.

    PubMed  CAS  Google Scholar 

  14. Nghiem P, Ollick T, Gardner P, Schulman H. Interleukin-2 transcriptional block by multifunctional Ca2+/calmodulin kinase. Nature 1994;371:347–350.

    PubMed  CAS  Google Scholar 

  15. Sun P, Enslen H, Myung PS, Maurer RA. Differential activation of CREB by Ca2+/ calmodulin-dependent protein kinases type II and type IV involves phosphorylation of a site that negatively regulates activity. Genes Dev 1994;8:2527–2539.

    PubMed  CAS  Google Scholar 

  16. Sugimoto T, Stewart S, Guan KL. The calcium/calmodulin-dependent protein phosphatase calcineurin is the major Elk-1 phosphatase. J Biol Chem 1997; 272: 29415–29418.

    PubMed  CAS  Google Scholar 

  17. Zwilling S, Dieckmann A, Pfisterer P, Angel P, Wirth T. Inducible expression and phosphorylation of coactivator BOB.l/OBF.l in T cells. Science 1997;277: 221–225.

    PubMed  CAS  Google Scholar 

  18. Granelli-Piperno A, Nolan P, Inaba K, Steinman RM. The effect of immunosuppressive agents on the induction of nuclear factors that bind to sites on the interleukin 2 promoter. J Exp Med 1990;172:1869–1872.

    PubMed  CAS  Google Scholar 

  19. Zamoyska R. CD4 and CD8: modulators of T-cell receptor recognition of antigen and of immune responses? Curr Opin Immunol 1998;10:82–87.

    PubMed  CAS  Google Scholar 

  20. Rudd C, Helms S, Barber EK, Schlossman SF. The CD4/CD8:p561ck complex in T lymphocytes: a potential mechanism to regulate T-cell growth. Biochem Cell Biol 1989;67:581–589.

    PubMed  CAS  Google Scholar 

  21. Veillette A, Bookman MA, Horak EM, Bolen JB. The CD4 and CD8 T cell surface antigens are associated with the internal membrane tyrosine-protein kinase p561ck. CeU 1988;55:301–308.

    CAS  Google Scholar 

  22. Chan PY, Takei F. Molecular cloning and characterization of a novel murine T cell surface antigen, YE1/48. J Immunol 1989;142:1727–1736.

    PubMed  CAS  Google Scholar 

  23. Aruffo A, Seed B. Molecular cloning of a CD28 cDNA by a high-efficiency COS cell expression system. Proc Natl Acad Sci USA 1987;84:8573–8577.

    PubMed  CAS  Google Scholar 

  24. Boussiotis VA, Freeman GJ, Gribben JG, Nadler LM. The role of B7-1/B7-2:CD28/ CLTA-4 pathways in the prevention of anergy, induction of productive immunity and down-regulation of the immune response. Immunol Rev 1996; 153:5–26.

    PubMed  CAS  Google Scholar 

  25. Sperling AI, Bluestone JA. The complexities of T-cell co-stimulation: CD28 and beyond. Immunol Rev 1996;153:155–182.

    PubMed  CAS  Google Scholar 

  26. Chambers CA, Allison JP. Costimulatory regulation of T cell function. Curr Opin Cell Biol 1999;11:203–210.

    PubMed  CAS  Google Scholar 

  27. Green JM, Noel PJ, Sperling AI, et al. Absence of B7-dependent responses in CD28-deficient mice. Immunity 1994;1:501–508.

    PubMed  CAS  Google Scholar 

  28. Shahinian A, Pfeffer K, Lee KP, et al. Differential T cell costimulatory requirements in CD28-deficient mice. Science 1993;261:609–612.

    PubMed  CAS  Google Scholar 

  29. Linsley PS, Ledbetter JA. The role of the CD28 receptor during T cell responses to antigen. Annu Rev Immunol 1993;11:191–212.

    PubMed  CAS  Google Scholar 

  30. June CH, Bluestone JA, Nadler LM, Thompson CB. The B7 and CD28 receptor families. Immunol Today 1994;15:321–331.

    PubMed  CAS  Google Scholar 

  31. Bluestone, JA. New perspectives of CD28-B7-mediated T cell costimulation. Immunity 1995;2:555–559.

    PubMed  CAS  Google Scholar 

  32. Lenschow DJ, Walunas TL, Bluestone JA. CD28/B7 system of T cell costimulation. Ann Rev Immunol 1996;14:233–258.

    CAS  Google Scholar 

  33. Yu X, Abe R, Hodes RJ. The role of B7-CD28 co-stimulation in tumor rejection. Int Immunol 1998;10:791–797.

    PubMed  CAS  Google Scholar 

  34. Townsend SE, Allison JP. Tumor rejection after direct costimulation of CD8+ T cells by B7-transfected melanoma cells. Science 1993;259:368–370.

    PubMed  CAS  Google Scholar 

  35. Melero I, Bach N, Chen L. Costimulation, tolerance and ignorance of cytolytic T lymphocytes in immune responses to tumor antigens. Life Sei 1997;60:2035–2041.

    CAS  Google Scholar 

  36. Boise LH, Minn AJ, Noel PJ, et al. CD28 costimulation can promote T cell survival by enhancing the expression of Bcl-XL. Immunity 1995;3:87–98.

    PubMed  CAS  Google Scholar 

  37. Shi Y, Radvanyi LG, Sharma A, et al. CD28-mediated signaling in vivo prevents activation-induced apoptosis in the thymus and alters peripheral lymphocyte homeostasis. J Immunol 1995;155:1829–1837.

    PubMed  CAS  Google Scholar 

  38. Boussiotis VA, Lee BJ, Freeman GJ, Gribben JG, Nadler LM. Induction of T cell clonal anergy results in resistance, whereas CD28-mediated costimulation primes for susceptibility to Fas-and Bax-mediated programmed cell death. J Immunol 1997;159:3156–3167.

    PubMed  CAS  Google Scholar 

  39. Lu P, Wang YL, Linsley PS. Regulation of self-tolerance by CD80/CD86 interactions. Curr Opin Immunol 1997;9:858–862.

    PubMed  CAS  Google Scholar 

  40. Sayegh MH, Turka LA. T cell costimulatory pathways: promising novel targets for immunosuppression and tolerance induction. J Am Soc Nephrol 1995;6: 1143–1150.

    PubMed  CAS  Google Scholar 

  41. LaSalle JM, Hafler DA. T cell anergy. FASEB J 1994;8:601–608.

    PubMed  CAS  Google Scholar 

  42. Schwartz RH. Models of T cell anergy: is there a common molecular mechanism? J Exp Med 1996;184:1–8.

    PubMed  CAS  Google Scholar 

  43. Fields P, Fitch FW, Gajewski TF. Control of T lymphocyte signal transduction through clonal anergy. J Mol Med 1996;74:673–683.

    PubMed  CAS  Google Scholar 

  44. Powell JD, Ragheb JA, Kitagawa-Sakakida S, Schwartz RH. Molecular regulation of interleukin-2 expression by CD28 co-stimulation and anergy. Immunol Rev 1998;165:287–3

    PubMed  CAS  Google Scholar 

  45. Waterhouse P, Marengere LE, Mittrucker HW, Mak TW. CTLA-4, a negative regulator of T-lymphocyte activation. Immunol Rev 1996;153:183–207.

    Google Scholar 

  46. Saito T. Negative regulation of T cell activation. Curr Opin Immunol 1998; 10: 313–321.

    PubMed  CAS  Google Scholar 

  47. Oosterwegel MA, Greenwald RJ, Mandelbrot DA, Lorsbach RB, Sharpe AH. CTLA-4 and T ceU activation. Curr Opin Immunol 1999;11:294–300.

    PubMed  CAS  Google Scholar 

  48. Krummel MF, Allison JP. CTLA-4 engagement inhibits IL-2 accumulation and cell cycle progression upon activation of resting T cells. J Exp Med 1996; 183: 2533–2540.

    PubMed  CAS  Google Scholar 

  49. Walunas TL, Bakker CY, Bluestone JA. CTLA-4 ligation blocks CD28-dependent T cell activation. J Exp Med 1996;183:2541–2550.

    PubMed  CAS  Google Scholar 

  50. Leach DR, Krummel MF, Allison JP. Enhancement of antitumor immunity by CTLA-4 blockade. Science 1996;271:1734–1736.

    PubMed  CAS  Google Scholar 

  51. Karandikar NJ, Vanderlugt CL, Walunas TL, Miller SD, Bluestone JA. CTLA-4: a negative regulator of autoimmune disease. J Exp Med 1996;184:783–788.

    PubMed  CAS  Google Scholar 

  52. Tivol EA, Boyd SD, McKeon S, et al. CTLA4Ig prevents lymphoproliferation and fatal multiorgan tissue destruction in CTLA-4-deficient mice. J Immunol 1997; 158:5091–5094.

    PubMed  CAS  Google Scholar 

  53. Raab M, Cai YC, Bunnell SC, Heyeck SD, Berg LJ, Rudd CE. p56Lck and p59Fyn regulate CD28 binding to phosphatidylinositol 3-kinase, growth factor receptorbound protein GRB-2, and T cell-specific protein-tyrosine kinase ITK: implications for T-cell costimulation. Proc Natl Acad Sci USA 1995;92:8891–8895.

    PubMed  CAS  Google Scholar 

  54. August A, Gibson S, Kawakami Y, Kawakami T, Mills GB, Dupont B. CD28 is associated with and induces the immediate tyrosine phosphorylation and activation of the Tec family kinase ITK/EMT in the human Jurkat leukemic T-cell line. Proc Natl Acad Ssi USA 1994;91:9347–9351.

    CAS  Google Scholar 

  55. Lu Y, Granelli-Piperno A, Bjorndahl JM, Phillips CA, Trevillyan JM. CD28-induced T cell activation. Evidence for a protein-tyrosine kinase signal transduction pathway. J Immunol 1992;149:24–29.

    CAS  Google Scholar 

  56. Vandenberghe P, Freeman GJ, Nadler LM, et al. Antibody and B7/BBl-mediated ligation of the CD28 receptor induces tyrosine phosphorylation in human T cells. J Exp Med 1992;175:951–960.

    PubMed  CAS  Google Scholar 

  57. Hutchcroft JE, Bierer BE. Activation-dependent phosphorylation of the T-lymphocyte surface receptor CD28 and associated proteins. Proc Natl Acad Sei USA 1994;91:3260–3264.

    CAS  Google Scholar 

  58. Ledbetter JA, Linsley PS. CD28 receptor crosslinking induces tyrosine phosphorylation of PLC gamma 1. Adv Exp Med Biol 1992;323:23–27.

    PubMed  CAS  Google Scholar 

  59. Klasen S, Pages F, Peyron JF, Cantrell DA, Olive D. Two distinct regions of the CD28 intracytoplasmic domain are involved in the tyrosine phosphorylation of Vav and GTPase activating protein-associated p62 protein. Int Immunol 1998; 10: 481–489.

    PubMed  CAS  Google Scholar 

  60. August A, Dupont B. Activation of src family kinase lck following CD28 crosslinking in the Jurkat leukemic cell line. Biochem Biophys Res Commun 1994; 199: 1466–1473.

    PubMed  CAS  Google Scholar 

  61. Nunes JA, Truneh A, Olive D, Cantrell DA. 1996. Signal transduction by CD28 costimulatory receptor on T cells: B71 and B7-1 regulation of tyrosine kinase adaptor molecules. J Biol Chem 1996;271:1591–1598.

    PubMed  CAS  Google Scholar 

  62. Pages F, Ragueneau M, Rottapel R, et al. Binding of phosphatidylinositol-3-OH kinase to CD28 is required for T-cell signalling. Nature 1994;369:327–329.

    PubMed  CAS  Google Scholar 

  63. August A, Dupont B. CD28 of T lymphocytes associates with phosphatidylinositol 3-kinase. Int Immunol 1994;6:769–774.

    PubMed  CAS  Google Scholar 

  64. Tsuchida M, Manthei ER, Knechtle SJ, Hamawy MM. CD28 ligation induces rapid tyrosine phosphorylation of the linker molecule LAT in the absence of Syk and Zap-70 tyrosine phosphorylation. Eur J Immunol 1999;29:2354–2359.

    PubMed  CAS  Google Scholar 

  65. Songyang Z, Shoelson SE, Chaudhuri M, et al. SH2 domains recognize specific phosphopeptide sequences. Cell 1993;72:767–778.

    PubMed  CAS  Google Scholar 

  66. Cefai D, Cai YC, Hu H, Rudd C. CD28 co-stimulatory regimes differ in their dependence on phosphatidylinositol 3-kinase: common co-signals induced by CD80 and CD86. Int Immunol 1996;8:1609–1616.

    PubMed  CAS  Google Scholar 

  67. Pages F, Ragueneau M, Klasen S, et al. Two distinct intracytoplasmic regions of the T-cell adhesion molecule CD28 participate in phosphatidylinositol 3-kinase association. J Biol Chem 1996;271:9403–9409.

    PubMed  CAS  Google Scholar 

  68. Schneider H, Cai YC, Prasad KV, Shoelson SE, Rudd CE. T cell antigen CD28 binds to the GRB-2/SOS complex, regulators of p21ras. Eur J Immunol 1995;25: 1044–1050.

    PubMed  CAS  Google Scholar 

  69. Kim HH, Tharayil M, Rudd CE. Growth factor receptor-bound protein 2 SH2/SH3 domain binding to CD28 and its role in co-signaling. J Biol Chem 1998; 273: 296–301.

    PubMed  CAS  Google Scholar 

  70. Teng JM, King PD, Sadra A, et al. Phosphorylation of each of the distal three tyrosines of the CD28 cytoplasmic tail is required for CD28-induced T cell IL-2 secretion. Tissue Antigens 1996;48:255–264.

    PubMed  CAS  Google Scholar 

  71. Truitt KE, Nagel T, Suen LF, Imboden JB. Structural requirements for CD28-mediated costimulation of IL-2 production in Jurkat T cells. J Immunol 1996; 156: 4539–4541.

    PubMed  CAS  Google Scholar 

  72. Truitt KE, Shi J, Gibson S, Segal LG, Mills GB, Imboden JB. CD28 delivers costimulatory signals independently of its association with phosphatidylinositol 3-kinase. J Immunol 1995;155:4702–4710.

    PubMed  CAS  Google Scholar 

  73. Cefai D, Schneider H, Matangkasombut O, Kang H, Brody J, Rudd CE. CD28 receptor endocytosis is targeted by mutations that disrupt phosphatidylinositol 3-kinase binding and costimulation. J Immunol 1998;160:2223–2230.

    PubMed  CAS  Google Scholar 

  74. King PD, Sadra A, Teng JM, et al. Analysis of CD28 cytoplasmic tail tyrosine residues as regulators and substrates for the protein tyrosine kinases, EMT and LCK. J Immunol 1997;158:580–590.

    PubMed  CAS  Google Scholar 

  75. Gibson S, Truitt K, Lu Y, et al. Efficient CD28 signalling leads to increases in the kinase activities of the TEC family tyrosine kinase EMT/ITK/TSK and the SRC family tyrosine kinase LCK. Biochem J 1998;330:1123–1128.

    PubMed  CAS  Google Scholar 

  76. Marengere LE, Okkenhaug K, Clavreul A, et al. The SH3 domain of Itk/Emt binds to proline-rich sequences in the cytoplasmic domain of the T cell costimulatory receptor CD28. J Immunol 1997;159:3220–3229.

    PubMed  CAS  Google Scholar 

  77. Okkenhaug K, Rottapel R. Grb2 forms an inducible protein complex with CD28 through a Src homology 3 domain-proline interaction. J Biol Chem 1998; 273: 21194–21202.

    PubMed  CAS  Google Scholar 

  78. Nunes JA, Collette Y, Truneh A, Olive D, Cantrell DA. The role of p21ras in CD28 signal transduction: triggering of CD28 with antibodies, but not the ligand B7-1, activates p21ras. J Exp Med 1994;180:1067–1076.

    PubMed  CAS  Google Scholar 

  79. Kaga S, Ragg S, Rogers KA, Ochi A. Stimulation of CD28 with B7-2 promotes focal adhesion-like contacts where Rho family small G proteins accumulate in T cells. J Immunol 1998;160:24–27.

    PubMed  CAS  Google Scholar 

  80. Vojtek AB, Cooper JA. Rho family members: activators of MAP kinase cascades. Cell 1995;82:527–529.

    PubMed  CAS  Google Scholar 

  81. Reif K, Cantrell DA..Networking Rho family GTPases in lymphocytes. Immunity 1998;8:395–401.

    PubMed  CAS  Google Scholar 

  82. Su B, Jacinto E, Hibi M, Kallunki T, Karin M, Ben-Neriah Y. JNK is involved in signal integration during costimulation of T lymphocytes. Cell 1994;77:727–736.

    PubMed  Google Scholar 

  83. Nishina H, Bachmann M, Oliveira-dos-Santos AJ, et al. Impaired CD28-mediated interleukin 2 production and proliferation in stress kinase SAPK/ERK1 kinase (SEKl)/mitogen-activated protein kinase kinase 4 (MKK4)-deficient T lymphocytes. J Exp Med 1997;186:941–953.

    PubMed  CAS  Google Scholar 

  84. Kaga S, Ragg S, Rogers KA, Ochi A. Activation of p21-CDC42/Rac-activated kinases by CD28 signaling: p21-activated kinase (PAK) and MEK kinase 1 (MEKK1) may mediate the interplay between CD3 and CD28 signals. J Immunol 1998;160:4182–4189.

    PubMed  CAS  Google Scholar 

  85. June CH, Ledbetter JA, Gillespie MM, Lindsten T, Thompson CB. T-cell proliferation involving the CD28 pathway is associated with cyclosporine-resistant interleukin 2 gene expression. Mol Cell Biol 1987;7:4472–4481.

    PubMed  CAS  Google Scholar 

  86. Bloemena E, Van Oers RH, Weinreich S, et al. The influence of cyclosporin A on the alternative pathways of human T cell activation in vitro. Eur J Immunol 1989;19:943–946.

    PubMed  CAS  Google Scholar 

  87. Rafiq K, Kasran A, Peng X, et al. Cyclosporin A increases IFN-gamma production by T cells when co-stimulated through CD28. Eur J Immunol 1998;28:1481–1491.

    PubMed  CAS  Google Scholar 

  88. Miyatake S, Nakaseko C, Umemori H, Yamamoto T, Saito T. Src family tyrosine kinases associate with and phosphorylate CTLA-4 (CD152). Biochem Biophys Res Commun 1998;249:444–448.

    PubMed  CAS  Google Scholar 

  89. Chuang E, Lee KM, Robbins MD, et al. Regulation of cytotoxic T lymphocyteassociated molecule-4 by Src kinases. J Immunol 1999;162:1270–1277.

    PubMed  CAS  Google Scholar 

  90. Chuang E, Alegre ML, Duckett CS, Noel PJ, Vander Heiden M, Thompson CB. Interaction of CTLA-4 with the clathrin-associated protein AP50 results in ligandindependent endocytosis that limits cell surface expression. J Immunol 1997; 159:144–151.

    PubMed  CAS  Google Scholar 

  91. Zhang Y, Allison JP. Interaction of CTLA-4 with AP50, a clathrin-coated pit adaptor protein. Proc Natl Acad Sci USA 1997;94:9273–9278.

    Google Scholar 

  92. Shiratori T, Miyatake S, Ohno H, et al. Tyrosine phosphorylation controls internalization of CTLA-4 by regulating its interaction with clathrin-associated adaptor complex AP-2. Immunity 1997;6:583–589.

    PubMed  CAS  Google Scholar 

  93. Bradshaw JD, Lu P, Leytze G, et al. Interaction of the cytoplasmic tail of CTLA-4 (CD 152) with a clathrin-associated protein is negatively regulated by tyrosine phosphorylation. Biochemistry 1997;36:15975–15982.

    PubMed  CAS  Google Scholar 

  94. Lee KM, Chuang E, Griffin M, et al..Molecular basis of T cell inactivation by CTLA-4. Science 1998;282:2263–2266.

    PubMed  CAS  Google Scholar 

  95. Marengere LE, Waterhouse P, Duncan GS, Mittrucker HW, Feng GS, Mak TW. Regulation of T cell receptor signaling by tyrosine phosphatase SYP association with CTLA-4. Science 1996;272:1170–1173.

    PubMed  CAS  Google Scholar 

  96. Calvo CR, Amsen D, Kruisbeek AM. Cytotoxic T lymphocyte antigen 4 (CTLA-4) interferes with extracellular signal-regulated kinase (ERK) and Jun NH2-terminal kinase (JNK) activation, but does not affect phosphorylation of T cell receptor zeta and ZAP70. J Exp Med 1997;186:1645–1653.

    PubMed  CAS  Google Scholar 

  97. Fraser JH, Rincón M, McCoy KD, Le Gros G. CTLA4 ligation attenuates AP-1, NFAT and NF-kappaB activity in activated T cells. Eur J Immunol 1999;29: 838–844.

    PubMed  CAS  Google Scholar 

  98. Olsson C, Riebeck K, Dohlsten M, Michaelsson E. CTLA-4 ligation suppresses CD28-induced NF-kappaB and AP-1 activity in mouse T cell blasts. J Biol Chem 1999;274:14400–14405.

    PubMed  CAS  Google Scholar 

  99. Pioli C, Gatta L, Frasca D, Doria G. Cytotoxic T lymphocyte antigen 4 (CTLA-4) inhibits CD28-induced IKBOα degradation and RelA activation. Eur J Immunol 1999;29:856–863.

    PubMed  CAS  Google Scholar 

  100. Van Gool SW, Vandenberghe P, de Boer M, Ceuppens JL. 1996. CD80, CD86 and CD40 provide accessory signals in a multiple-step T-cell activation model. Immunol Rev 1996;153:47–83.

    Google Scholar 

  101. Grewal IS, Flavell RA. The role of CD40 ligand in costimulation and T-cell activation. Immunol Rev 1996;153:85–106.

    PubMed  CAS  Google Scholar 

  102. Law CL, Craxton A, Otipoby KL, Sidorenko SP, Klaus SJ, Clark EC. Regulation of signalling through B-lymphocyte antigen receptors by cell-cell interaction molecules. Immunol Rev 1996;153:123–154.

    PubMed  CAS  Google Scholar 

  103. Xu J, Foy TM, Laman JD, et al. Mice deficient for the CD40 ligand. Immunity 1994;1:423–431.

    PubMed  CAS  Google Scholar 

  104. Aruffo A, Hollenbaugh D, Wu LH, Ochs HD. The molecular basis of X-linked agammaglobulinemia, hyper-IgM syndrome, and severe combined immunodeficiency in humans. Curr Opin Hematol 1994;1:12–18.

    PubMed  CAS  Google Scholar 

  105. Schoenberger SP, Toes RM, Vandervoort EH, Offringa R, Melief CM. T-cell help for cytotoxic T lymphocytes is mediated by CD40-CD40L interactions. Nature 1998;393:480–483.

    PubMed  CAS  Google Scholar 

  106. van Essen D, Kikutani H, Gray D. CD40 ligand-transduced co-stimulation of T cells in the development of helper function. Nature 1995;378:620–623.

    PubMed  Google Scholar 

  107. Brenner B, Koppenhoefer U, Lepple-Wienhues A, et al. The CD40 ligand directly activates T-lymphocytes via tyrosine phosphorylation dependent PKC activation. Biochem Biophys Res Commun 1997;239:11–17.

    PubMed  CAS  Google Scholar 

  108. Koretzky GA. Role of the CD45 tyrosine phosphatase in signal transduction in the immune system. FASEB J 1993;7:420–426.

    PubMed  CAS  Google Scholar 

  109. Trowbridge IS, Thomas ML. CD45: an emerging role as a protein tyrosine phosphatase required for lymphocyte activation and development. Annu Rev Immunol 1994;12:85–116.

    PubMed  CAS  Google Scholar 

  110. Koretzky GA, Picus J, Thomas ML, Weiss A. Tyrosine phosphatase CD45 is essential for coupling T-cell antigen receptor to the phosphatidyl inositol pathway. Nature 1990;346:66–68.

    PubMed  CAS  Google Scholar 

  111. Furukawa T, Itoh M, Krueger NX, Streuli M, Saito H. Specific interaction of the CD45 protein-tyrosine phosphatase with tyrosine-phosphorylated CD3 zeta chain. Proc Natl Acad Sei USA 1994;91:10928–10932.

    CAS  Google Scholar 

  112. Burns CM, Sakaguchi K, Appella E, Ashwell JD. CD45 regulation of tyrosine phosphorylation and enzyme activity of sre family kinases. J Biol Chem 1994; 269:13594–13600.

    PubMed  CAS  Google Scholar 

  113. D’Oro U, Ashwell JD. The CD45 tyrosine phosphatase is an inhibitor of Lck activity in thymocytes. J Immunol 1999;162:1879–1883.

    PubMed  Google Scholar 

  114. Pao LI, Bedzyk WD, Persin C, Cambier JC. Molecular targets of CD45 in B cell antigen receptor signal transduction. J Immunol 1997;158:1116–1124.

    PubMed  CAS  Google Scholar 

  115. Holter W, Schwarz M, Cerwenka A, Knapp W. The role of CD2 as a regulator of human T-cell cytokine production. Immunol Rev 1996;153:107–122.

    PubMed  CAS  Google Scholar 

  116. Davis SJ, van der Merwe PA. The structure and ligand interactions of CD2: implications for T-cell function. Immunol Today 1996;17:177–187.

    PubMed  CAS  Google Scholar 

  117. Lin H, Hutchcroft JE, Andoniou CE, Kamoun M, Band H, Bierer BE. Association of p59(fyn) with the T lymphocyte costimulatory receptor CD2. Binding of the Fyn Src homology (SH) 3 domain is regulated by the Fyn SH2 domain. J Biol Chem 1998;273:19914–19921.

    CAS  Google Scholar 

  118. Bierer BE, Sleckman BP, Ratnofsky SE, Burakoff SJ. The biologic roles of CD2, CD4, and CD8 in T-cell activation. Annu Rev Immunol 1989;7:579–599.

    PubMed  CAS  Google Scholar 

  119. Lub M, van Kooyk Y, Figdor CG. Ins and outs of LFA-1. Immunol Today 1995; 16: 479–483.

    PubMed  CAS  Google Scholar 

  120. Makgoba MW, Sanders ME, Ginther Luce GE, et al. ICAM-1 a ligand for LFA-1-dependent adhesion of B, T and myeloid cells. Nature 1988;331:86–88.

    PubMed  CAS  Google Scholar 

  121. Hibbs ML, Xu H, Stacker SA, Springer TA. Regulation of adhesion of ICAM-1 by the cytoplasmic domain of LFA-1 integrin beta subunit. Science 1991;251:1611–16

    PubMed  CAS  Google Scholar 

  122. Dustin ML, Springer TA. T-cell receptor cross-linking transiently stimulates adhesiveness through LFA-1. Nature 1989;341:619–624.

    PubMed  CAS  Google Scholar 

  123. Soede RD, Wijnands YM, Van Kouteren-Cobzaru I, Roos E. ZAP-70 tyrosine kinase is required for LFA-1-dependent T cell migration. J Cell Biol 1998; 142: 1371–1379.

    PubMed  CAS  Google Scholar 

  124. Tabassam FH, Umehara H, Huang JY, et al. Beta2-integrin, LFA-1, and TCR/CD3 synergistically induce tyrosine phosphorylation of focal adhesion kinase (ppl25(FAK)) in PHA-activated T cells. Cell Immunol 1999;193:179–184.

    PubMed  CAS  Google Scholar 

  125. Hynes RO. Integrins: versatility, modulation, and signaling in cell adhesion. Cell 1992;69:11–25.

    PubMed  CAS  Google Scholar 

  126. Bachmann MF, McKall-Faienza K, Schmits R, et al. Distinct roles for LFA-1 and CD28 during activation of naive T cells: adhesion versus costimulation. Immunity 1997;7:549–557.

    PubMed  CAS  Google Scholar 

  127. Kishimoto H, Cai Z, Brunmark A, Jackson MR, Peterson PA, Sprent J. Differing roles for B7 and intercellular adhesion molecule-1 in negative selection of thymocytes. J Exp Med 1996;184:531–537.

    PubMed  CAS  Google Scholar 

  128. Goodison S, Urquidi V, Tarin D. CD44 cell adhesion molecules. J Clin Pathol Mol Pathol 1999;52:189–196.

    CAS  Google Scholar 

  129. DeGrendele HC, Kosfiszer M, Estess P, Siegelman MH. CD44 activation and associated primary adhesion is inducible via T cell receptor stimulation. J Immunol 1997;159:2549–2553.

    PubMed  CAS  Google Scholar 

  130. DeGrendele HC, Estess P, Siegelman MH. Requirement for CD44 in activated T cell extravasation into an inflammatory site. Science 1997;278:672–675.

    PubMed  CAS  Google Scholar 

  131. Sayegh MH, Turka LA. The role of T-cell costimulatory activation pathways in transplant rejection. N Engl J Med 1998;338:1813–1821.

    PubMed  CAS  Google Scholar 

  132. Motoyama K, Arima T, Lehmann M, Flye MW. Tolerance to heart and kidney grafts induced by nondepleting anti-CD4 monoclonal antibody (RIB 5/2) versus depleting anti-CD4 monoclonal antibody (OX-38) with donor antigen administration. Surgery 1997;122:213–219.

    PubMed  CAS  Google Scholar 

  133. Saitovitch D, Bushell A, Mabbs DW, Morris PJ, Wood KJ. Kinetics of induction of transplantation tolerance with a nondepleting anti-CD4 monoclonal antibody and donor-specific transfusion before transplantation. A critical period of time is required for development of immunological unresponsiveness. Transplantation 1996;61:1642–1647.

    CAS  Google Scholar 

  134. Ito H, Hamano K, Fukumoto T, Wood KJ, Esato K. Bidirectional blockade of CD4 and major histocompatibility complex class II molecules: an effective immunosuppressive treatment in the mouse heart transplantation model. J Heart Lung Transplant 1998;17:460–469.

    PubMed  CAS  Google Scholar 

  135. Arima T, Lehmann M, Flye MW. Induction of donor specific transplantation tolerance to cardiac allografts following treatment with nondepleting (RIB 5/2) or depleting (OX-38) anti-CD4 mAb plus intrathymic or intravenous donor alloantigen. Transplantation 1997;63:284–292.

    PubMed  CAS  Google Scholar 

  136. Bushell A, Niimi M, Morris PJ, Wood KJ. Evidence for immune regulation in the induction of transplantation tolerance: a conditional but limited role for IL-4. J Immunol 1999;162:1359–1366.

    PubMed  CAS  Google Scholar 

  137. Plain KM, Fava L, Spinelli A, et al. Induction of tolerance with nondepleting anti-CD4 monoclonal antibodies is associated with down-regulation of TH2 cytokines. Transplantation 1997;64:1559–1567.

    PubMed  CAS  Google Scholar 

  138. Jaques BC, Ahmiedat H, Alastair GJ, et al. Thymus-dependent, anti-CD4-induced tolerance to rat cardiac allografts. Transplantation 1998;66:1291–1299.

    PubMed  CAS  Google Scholar 

  139. Orosz CG, Huang EH, Bergese SD, et al. 1997. Prevention of acute murine cardiac allograft rejection: anti-CD4 or anti-vascular cell adhesion molecule one monoclonal antibodies block acute rejection but permit persistent graft-reactive alloimmunity and chronic tissue remodeling. J Heart Lung Transplant 1997;16:889–904.

    PubMed  CAS  Google Scholar 

  140. Kirk AD, Harlan DM, Armstrong NN, et al. CTLA4-Ig and anti-CD40 ligand prevent renal allograft rejection in primates. Proc Natl Acad Sci USA 1997;94:8789–8794.

    PubMed  CAS  Google Scholar 

  141. Kirk AD, Burkly LC, Batty DS, et al. Treatment with humanized monoclonal antibody against CD154 prevents acute renal allograft rejection in nonhuman primates. Nat Med 1999;5:686–693.

    PubMed  CAS  Google Scholar 

  142. Levisetti MG, Padrid PA, Szot GL, et al. Immunosuppressive effects of human CTLA4Ig in a non-human primate model of allogeneic pancreatic islet transplan-tation. J Immunol 1997;159:5187–5191.

    PubMed  CAS  Google Scholar 

  143. Onodera K, Chandraker A, Schaub M, et al. CD28-B7 T cell costimulatory blockade by CTLA4Ig in sensitized rat recipients: induction of transplantation tolerance in association with depressed cell-mediated and humoral immune responses. J Immunol 1997;159:1711–1717.

    PubMed  CAS  Google Scholar 

  144. Boiling SF, Lin H, Wei RO, Turka LA. Preventing allograft rejection with CTLA4IG: effect of donor-specific transfusion route or timing. J Heart Lung Transplant 1996;15:928–935.

    Google Scholar 

  145. Perez VL, van Parijs L, Biuckians A, Zheng XX, Strom TB, Abbas AK. Induction of peripheral T cell tolerance in vivo requires CTLA-4 engagement. Immunity 1997; 6:411–417.

    PubMed  CAS  Google Scholar 

  146. Zheng XX, Markees TG, Hancock WW, et al. CTLA4 signals are required to optimally induce allograft tolerance with combined donor-specific transfusion and anti-CD154 monoclonal antibody treatment. J Immunol 1999;162:4983–4990.

    PubMed  CAS  Google Scholar 

  147. Judge TA, Wu Z, Zheng XG, Sharpe AH, Sayegh MH, Turka LA. The role of CD80, CD86, and CTLA4 in alloimmune responses and the induction of long-term allograft survival. J Immunol 1999;162:1947–1951.

    PubMed  CAS  Google Scholar 

  148. Dengler TJ, Szabo G, Sido B, et al. Prolonged allograft survival but no tolerance induction by modulating CD28 antibody JJ319 after high-responder rat heart transplantation. Transplantation 1999;67:392–398.

    PubMed  CAS  Google Scholar 

  149. Russell ME, Hancock WW, Akalin E, et al. Chronic cardiac rejection in the LEW to F344 rat model. Blockade of CD28-B7 costimulation by CTLA4Ig modulates T cell and macrophage activation and attenuates arteriosclerosis. J Clin Invest 1996;97:833–838.

    CAS  Google Scholar 

  150. Chandraker A, Azuma H, Nadeau K, et al. Late blockade of T cell costimulation interrupts progression of experimental chronic allograft rejection. J Clin Invest 1998; 101:2309–2318.

    PubMed  CAS  Google Scholar 

  151. Larsen CP, Alexander DZ, Hollenbaugh D, et al. CD40-gp39 interactions play a critical role during allograft rejection. Suppression of allograft rejection by blockade of the CD40-gp39 pathway. Transplantation 1996;61:4–9.

    CAS  Google Scholar 

  152. Parker DC, Greiner DL, Phillips NE, et al. Survival of mouse pancreatic islet allografts in recipients treated with allogeneic small lymphocytes and antibody to CD40 ligand. Proc Natl Acad Sci USA 1995;92:9560–9564.

    PubMed  CAS  Google Scholar 

  153. Chang AC, Blum MG, Blair KS, et al. Prolonged anti-CD40 ligand therapy improves primate cardiac allograft survival. Transplant Proc 1999; 31:95

    PubMed  CAS  Google Scholar 

  154. Hamawy MM, Knechtle SJ. Strategies for tolerance induction in nonhuman primates. Curr Opin Immunol 1998;10:513–517.

    PubMed  CAS  Google Scholar 

  155. Larsen CP, Elwood ET, Alexander DZ, et al. Long-term acceptance of skin and cardiac allografts after blocking CD40 and CD28 pathways. Nature 1996;381: 434–438.

    PubMed  CAS  Google Scholar 

  156. Sun H, Subbotin V, Chen C, et al. Prevention of chronic rejection in mouse aortic allografts by combined treatment with CTLA4-Ig and anti-CD40 ligand monoclonal antibody. Transplantation 1997;64:1838–1843.

    PubMed  CAS  Google Scholar 

  157. Lazarovits AI, Poppema S, Zhang Z, et al. Prevention and reversal of renal allograft rejection by antibody against CD45RB. Nature 1996;380:717–720.

    PubMed  CAS  Google Scholar 

  158. Basadonna GP, Auersvald L, Khuong CO, et al. Antibody-mediated targeting of CD45 isoforms: a novel immunotherapeutic strategy. Proc Natl Acad Sci USA 1998;95:3821–3826.

    PubMed  CAS  Google Scholar 

  159. Gao Z, Zhong R, Jiang J, et al. Adoptively transferable tolerance induced by CD45RB monoclonal antibody. J Am Soc Nephrol 1999;10:374–381.

    PubMed  CAS  Google Scholar 

  160. Sido B, Dengler TJ, Otto G, Zimmermann R, Muller P, Meuer SC. Differential immunosuppressive activity of monoclonal CD2 antibodies on allograft rejection versus specific antibody production. Eur J Immunol 1998;28:1347–1357.

    PubMed  CAS  Google Scholar 

  161. Kapur S, Khanna A, Sharma VK, Li B, Suthanthiran M. CD2 antigen targeting reduces intragraft expression of mRNA-encoding granzyme B and IL-10 and induces tolerance. Transplantation 1996;62:249–255.

    PubMed  CAS  Google Scholar 

  162. Woodward JE, Qin L, Chavin KD, et al. Blockade of multiple costimulatory receptors induces hyporesponsiveness: inhibition of CD2 plus CD28 pathways. Transplantation 1996;62:1011–1018.

    PubMed  CAS  Google Scholar 

  163. Krieger NR, Most D, Bromberg JS, et al. Coexistence of Thl-and Th2-type cytokine profiles in anti-CD2 monoclonal antibody-induced tolerance. Transplantation 1996;62:1285–1292.

    PubMed  CAS  Google Scholar 

  164. Kaplon RJ, Hochman PS, Michler RE, et al. Short course single agent therapy with an LFA-3-IgGl fusion protein prolongs primate cardiac allograft survival. Transplantation 1996;61:356–363.

    PubMed  CAS  Google Scholar 

  165. Besse T, Malaise J, Mourad M, et al. Prevention of rejection with BTI-322 after renal transplantation (results at 9 months). Transplant Proc 1997;29:2425–2426.

    PubMed  CAS  Google Scholar 

  166. Mourad M, Besse T, Malaise J, et al. BTI-322 for acute rejection after renal transplantation. Transplant Proc 1997;29:2353

    PubMed  CAS  Google Scholar 

  167. Zuckerman LA, Pullen L, Miller J. Functional consequences of costimulation by ICAM-1 on IL-2 gene expression and T cell activation. J Immunol 1998; 160: 3259–3268.

    PubMed  CAS  Google Scholar 

  168. Isobe M, Suzuki J, Yamazaki S, et al. Regulation by differential development of Thl and Th2 cells in peripheral tolerance to cardiac allograft induced by blocking ICAM-1/LFA-l adhesion. Circulation 1997;96:2247–2253.

    PubMed  CAS  Google Scholar 

  169. Suzuki J, Isobe M, Yamazaki S, Horie S, Okubo Y, Sekiguchi M. Inhibition of accelerated coronary atherosclerosis with short-term blockade of intercellular adhesion molecule-1 and lymphocyte function-associated antigen-1 in a heterotopic murine model of heart transplantation. J Heart Lung Transplant 1997; 16: 1141–1148.

    PubMed  CAS  Google Scholar 

  170. Brandt M, Steinmann J, Steinhoff G, Haverich A. Treatment with monoclonal antibodies to ICAM-1 and LFA-1 in rat heart allograft rejection. Transpl Int 1997; 10: 141–144.

    PubMed  CAS  Google Scholar 

  171. Harrison PC, Madwed JB. Anti-LFA-1 alpha reduces the dose of cyclosporin A needed to produce immunosuppression in heterotopic cardiac transplanted rats. J Heart Lung Transplant 1999;18:279–284.

    PubMed  CAS  Google Scholar 

  172. Isobe M, Suzuki J, Yamazaki S, Horie S, Okubo Y, Sekiguchi M. Assessment of tolerance induction to cardiac allograft by anti-ICAM-1 and anti-LFA-1 monoclonal antibodies. J Heart Lung Transplant 1997; 16:1149–1156.

    PubMed  CAS  Google Scholar 

  173. Xu XY, Honjo K, Devore-Carter D, Bucy RP. Immunosuppression by inhibition of cellular adhesion mediated by leukocyte function-associated antigen-1/ intercellular adhesion molecule-1 in murine cardiac transplantation. Transplantation 1997;63:876–885.

    PubMed  CAS  Google Scholar 

  174. Hourmant M, Bedrossian J, Durand D, et al. A randomized multicenter trial comparing leukocyte function-associated antigen-1 monoclonal antibody with rabbit antithymocyte globulin as induction treatment in first kidney transplantations. Transplantation 1996;62:1565–1570.

    PubMed  CAS  Google Scholar 

  175. Uff CR, Reid SD, Wood RF, Pockley AG. CD44 expression in rejecting rat small bowel allografts. Transplantation 1995;60:985–989.

    PubMed  CAS  Google Scholar 

  176. Fujisaki S, Miyake H, Amano S, Nakayama H, Oida T, Takizawa H. Expression of CD44 in rat liver allografts during rejection. J Hepatobil Pancreat Surg 1998;5: 196–199.

    CAS  Google Scholar 

  177. Knoflach A, Magee C, Denton MD, et al. Immunomodulatory functions of hyaluronate in the LEW-to-F344 model of chronic cardiac allograft rejection. Transplantation 1999;67:909–914.

    PubMed  CAS  Google Scholar 

  178. Cooperative Clinical Trials in Transplantation Research Group. Murine OKT4A immunosuppression in cadaver renal allograft recipients: a cooperative clinical trial in transplantation pilot study. Transplantation 1997;67:392–398.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hamawy, M.M., Cho, C.S., Knechtle, S.J. (2001). Costimulatory Blockade as a Therapeutic Regimen for Prolonging Allograft Survival and Inducing Tolerance: An Overview of Recent Research. In: Thomson, A.W. (eds) Therapeutic Immunosuppression. Immunology and Medicine Series, vol 29. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0765-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0765-8_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3821-8

  • Online ISBN: 978-94-010-0765-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics