Skip to main content

Experimental Immunosuppressive Agents

  • Chapter
Therapeutic Immunosuppression

Part of the book series: Immunology and Medicine Series ((IMME,volume 29))

  • 116 Accesses

Abstract

Today, many new small and large molecular weight molecules are being developed for use as immunosuppressive agents. As the understanding of mechanisms of immune function improves, immunosuppressive drug discovery and development is able to more specifically target activation pathways that predominate in immune rather than nonimmune cells, thus decreasing nonspecific toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Garcia ML, Hanner M, Kaczorowski GJ. Scorpion toxins: tools for studying K+ channels. Toxicon 1998;36(ll):1641–50.

    Article  PubMed  CAS  Google Scholar 

  2. Lin CS, Boltz RC, Blake JT, et al. Voltage-gated potassium channels regulate calcium-dependent pathways involved in human T lymphocyte activation. Journal of Experimental Medicine 1993;177(3):637–45.

    Article  PubMed  CAS  Google Scholar 

  3. Lewis RS, Cahalan MD. Potassium and calcium channels in lymphocytes. Annual Review of Immunology 1995;13:623–53.

    Article  PubMed  CAS  Google Scholar 

  4. Kaiman K, Pennington MW, Lanigan MD, et al. ShK-Dap22, a potent Kv1.3-specific immunosuppressive polypeptide. Journal of Biological Chemistry 1998;273(49): 32697–707.

    Article  Google Scholar 

  5. Koo GC, Blake JT, Talento A, et al. Blockade of the voltage-gated potassium channel Kvl.3 inhibits immune responses in vivo. Journal of Immunology 1997; 158(ll):5120–8.

    CAS  Google Scholar 

  6. Nguyen A, Kath JC, Hanson DC, et al. Novel nonpeptide agents potently block the C-type inactivated conformation of Kvl.3 and suppress T cell activation. Molecular Pharmacology 1996;50(6):1672–9.

    PubMed  CAS  Google Scholar 

  7. Sullivan RW, Bigam CG, Erdman PE, et al. 2-Chloro-4-(trifluoromethyl)pyrimidine-5-N-(3’5’-bis(trifluoromethyl)phenyl)-carboxamide: a potent inhibitor of NFkappa B-and AP-1-mediated gene expression identified using solution-phase combinatorial chemistry. Journal of Medicinal Chemistry 1998;41(4):413–9.

    Article  PubMed  CAS  Google Scholar 

  8. Morikawa M, Shorthouse RA, Suto MJ, Goldman ME, Morris RE. A novel inhibitor of nuclear factor-kappa B and activator protein-1 transcription factors in T cells suppresses host-versus-graft alloreactivity in vivo. Transplantation Proceedings 1997;29(l-2):1269–70.

    Article  PubMed  CAS  Google Scholar 

  9. Goldman ME, Ransone LJ, Anderson DW, et al. SP100030 is a novel T-ceII-specific transcription factor inhibitor that possesses immunosuppressive activity in vivo. Transplantation Proceedings 1996;28(6):3106–9.

    PubMed  CAS  Google Scholar 

  10. Ritchie DM, Argentieri DC, Aparicio BL, Plante RK, Lau CY, Barbone AG. Cytokine-modulating activity of tepoxalin, a new potential antirheumatic. International Journal of Immunopharmacology 1995; 17(10):805–12.

    Article  PubMed  CAS  Google Scholar 

  11. Wallace JL, Cirino G, Cicala C, Anderson DW, Argentieri D, Capetola RJ. Comparison of the ulcerogenic properties of tepoxalin with those of non-steroidal antiinflammatory drugs (NSAIDs). Agents&Actions 1991;34(l-2):247–50.

    Article  CAS  Google Scholar 

  12. Fung-Leung WP, Pope BL, Chourmouzis E, Panakos JA, Lau CY. Tepoxalin, a novel immunomodulatory compound, synergizes with CsA in suppression of graft-versus-host reaction and allogeneic skin graft rejection. Transplantation 1995;60(4):362–8.

    Article  PubMed  CAS  Google Scholar 

  13. Kazmi SM, Plante RK, Visconti V, Taylor GR, Zhou L, Lau CY. Suppression of NF kappa B activation and NF kappa B-dependent gene expression by tepoxalin, a dual inhibitor of cyclooxygenase and 5-lipoxygenase. Journal of Cellular Biochemistry 1995;57(2):299–310.

    Article  PubMed  CAS  Google Scholar 

  14. Zhou L, Ritchie D, Wang EY, Barbone AG, Argentieri D, Lau CY. Tepoxalin, a novel immunosuppressive agent with a different mechanism of action from cyclosporin A. Journal of Immunology 1994;153(ll):5026–37.

    CAS  Google Scholar 

  15. Zhou L, Pope BL, Chourmouzis E, Fung-Leung WP, Lau CY. Tepoxalin blocks neutrophil migration into cutaneous inflammatory sites by inhibiting Mac-1 and E-selectin expression. European Journal of Immunology 1996;26(1): 120–9.

    Article  PubMed  CAS  Google Scholar 

  16. Lee DH, Tarn SS, Wang E, Taylor GR, Plante RK, Lau CY. The NF-kappa B inhibitor, tepoxalin, suppresses surface expression of the cell adhesion molecules CD62E, CDllb/CD18 and CD106. Immunology Letters 1996;53(2-3):109–13.

    Article  PubMed  CAS  Google Scholar 

  17. Waldman SA, Vitow C, Osborne B, et al. Pharmacokinetics and pharmacodynamics of tepoxalin after single oral dose administration to healthy volunteers. Journal of Clinical Pharmacology 1996;36(5):462–8.

    PubMed  CAS  Google Scholar 

  18. Orrenius S, Nobel CS, van den Dobbelsteen DJ, Burkitt MJ, Slater AF. Dithiocarbamates and the redox regulation of cell death. Biochemical Society Transactions 1996;24(4): 1032–8.

    PubMed  CAS  Google Scholar 

  19. Martinez-Martinez S, Gomez del Arco P, Armesilla AL, et al. Blockade of T-cell activation by dithiocarbamates involves novel mechanisms of inhibition of nuclear factor of activated T ceUs. Molecular&Cellular Biology 1997;17(ll):6437–47.

    CAS  Google Scholar 

  20. Wahl C, Liptay S, Adler G, Schmid RM. Sulfasalazine: a potent and specific inhibitor of nuclear factor kappa B. Journal of Clinical Investigation 1998; 101(5): 1163–74.

    Article  PubMed  CAS  Google Scholar 

  21. Kopp E, Ghosh S. Inhibition of NF-kappa B by sodium salicylate and aspirin [see comments]. Science 1994;265(5174):956–9.

    Article  PubMed  CAS  Google Scholar 

  22. Lin KI, Lee SH, Narayanan R, Baraban JM, Hardwick JM, Ratan RR. Thiol agents and Bcl-2 identify an alphavirus-induced apoptotic pathway that requires activation of the transcription factor NF-kappa B. Journal of Cell Biology 1995; 131(5):1149–61.

    Article  PubMed  CAS  Google Scholar 

  23. Beauparlant P, Hiscott J. Biological and biochemical inhibitors of the NF-kappa B/Rel proteins and cytokine synthesis. Cytokine&Growth Factor Reviews 1996; 7(2): 175–90.

    Article  CAS  Google Scholar 

  24. Bessho R, Matsubara K, Kubota M, et al. Pyrrolidine dithiocarbamate, a potent inhibitor of nuclear factor kappa B (NF-kappa B) activation, prevents apoptosis in human promyelocytc leukemia HL-60 cells and thymocytes. Biochemical Pharmacology 1994;48(10): 1883–9.

    Article  PubMed  CAS  Google Scholar 

  25. Ozaki K, Takeda H, Iwahashi H, Kitano S, Hanazawa S. NF-kappa B inhibitors stimulate apoptosis of rabbit mature osteoclasts and inhibit bone resorption by these ceUs. FEBS Letters 1997;410(2-3):297–300.

    Article  PubMed  CAS  Google Scholar 

  26. Henkel T, Machleidt T, Alkalay I, Kronke M, Ben-Neriah Y, Baeuerle PA. Rapid proteolysis of I kappa B-alpha is necessary for activation of transcription factor NF-kappa B. Nature 1993;365(6442):182–5.

    Article  PubMed  CAS  Google Scholar 

  27. Akiyama T, Ishida J, Nakagawa S, et al. Genistein, a specific inhibitor of tyrosinespecific protein kinases. Journal of Biological Chemistry 1987;262(12):5592–5.

    PubMed  CAS  Google Scholar 

  28. Stewart BH, Hoskin DW. Inhibition of protein tyrosine kinases or protein kinase C prevents nonspecific killer T lymphocyte-mediated tumoricidal activity. Biochi-mica et Biophysica Acta 1997;1356(3):333–42.

    Article  CAS  Google Scholar 

  29. Anel A, Buferne M, Boyer C, Schmitt-Verhulst AM, Golstein P. T cell receptorinduced Fas ligand expression in cytotoxic T lymphocyte clones is blocked by protein tyrosine kinase inhibitors and cyclosporin A. European Journal of Immunology 1994;24(10):2469–76.

    Article  PubMed  CAS  Google Scholar 

  30. Atluru S, Atluru D. Evidence that genistein, a protein-tyrosine kinase inhibitor, inhibits CD28 monoclonal-antibody-stimulated human T cell proliferation. Transplantation 1991; 51(2):448–50.

    Article  PubMed  CAS  Google Scholar 

  31. Fiedor P, Kozerski L, Dobrowolski JC, et al. Immunosuppressive effects of synthetic derivative of genistein on the survival of pancreatic islet allografts. Transplantation Proceedings 1998; 30(2): 537.

    Article  PubMed  CAS  Google Scholar 

  32. Semmler J, Gebert U, Eisenhut T, et al. Xanthine derivatives: comparison between suppression of tumour necrosis factor-alpha production and inhibition of cAMP phosphodiesterase activity. Immunology 1993;78:520–5.

    PubMed  CAS  Google Scholar 

  33. Tilg H, Eibl B, Pichl M, et al. Immune response modulation by pentoxifylline in vitro. Transplantation 1993;56(1):196–201.

    Article  PubMed  CAS  Google Scholar 

  34. Jewett A, Bonavida B. Pentoxifylline suppresses interleukin-2-mediated activation of immature human natural killer cells by inhibiting endogenous tumor necrosis factor-alpha secretion. J Clin Immunol 1994;14(1):31–8.

    Article  PubMed  CAS  Google Scholar 

  35. Koenigsrainer A, Aichberger C, Riedmann B, Steurer W, Oefner D, Margreiter R. Pentoxifylline as an adjunct to Cyclosporine-based immunosuppression does not improve the outcome of renal transplantation. Transpl Proc 1995;27(1): 1062–3.

    Google Scholar 

  36. Jilg S, Barsig J, Leist M, Kusters S, Volk HD, Wendel A. Enhanced release of interleukin-10 and soluble tumor necrosis factor receptors as novel principles of methylxanthine action in murine models of endotoxic shock. Journal of Pharmacology & Experimental Therapeutics 1996;278(1):421–31.

    CAS  Google Scholar 

  37. Lin Y, Goebels J, Rutgeerts O, et al. Use of the methylxanthine derivative A802715 in transplantation immunology: I. Strong in vitro inhibitory effects on CD28-costimulated T cell activities. Transplantation 1997;63(12):1813–8.

    CAS  Google Scholar 

  38. Lin Y, Segers C, Mikhalsky D, Tjandra-Maga TB, Schonharting M, Waer M. Use of the methylxanthine derivative A802715 in transplantation immunology: II. In vivo experiments. Transplantation 1997;63(12):1734–8.

    CAS  Google Scholar 

  39. Schwaninger M, Blume R, Oetjen E, Knepel W. The immunosuppressive drugs cyclosporin A and FK506 inhibit calcineurin phosphatase activity and gene transcription mediated through the cAMP-responsive element in a nonimmune cell line. Naunyn-Schmiedebergs Archives of Pharmacology 1993; 348(5): 541–5.

    CAS  Google Scholar 

  40. Bennett WM, Elzinga LW, Porter GA, Rosen S. The effects of pentoxifylline on experimental chronic Ciclosporine nephrotoxicity. Transplantation 1992; 54(6): 1118–20.

    Article  PubMed  CAS  Google Scholar 

  41. Gummert JF, Barten MJ, Boeke K, et al. Structure-based immunosuppressive drug design: Efficacy and pharmacokinetics of VX-497, a novel inhibitor of inosine monophosphate dehydrogenase, in rat heart allograft recipients, (submitted for publication) 1999.

    Google Scholar 

  42. Navia MA. Rational design of new immunosuppressive drugs. Transpl Proc 1999; 31(l-2):1097–8.

    Article  CAS  Google Scholar 

  43. Bartlett RR, Schleyerbach R. Immunopharmacological profile of a novel isoxazol derivative, HWA 486, with potential antirheumatic activity—I Disease modifying action on adjuvant arthritis of the rat. International Journal of Immunopharmacology 1985;7(1):7–18.

    Article  PubMed  CAS  Google Scholar 

  44. Silva Junior HT, Morris RE. Leflunomide and malononitrilamides. American Journal of the Medical Sciences 1997;313(5):289–301.

    Article  Google Scholar 

  45. Mladenovic V, Domljan Z, Rozman B, et al. Safety and effectiveness of leflunomide in the treatment of patients with active rheumatoid arthritis. Results of a randomized, placebo-controlled, phase II study. Arthritis & Rheumatism 1995; 38(ll):1595–603.

    CAS  Google Scholar 

  46. Kuo EA, Hambleton PT, Kay DP, et al. Synthesis, structure-activity relationships, and pharmacokinetic properties of dihydroorotate dehydrogenase inhibitors: 2-cyano-3-cyclopropyl-3-hydroxy-N-[3’-methyl-4,-(trifluoromethyl)phenyl ] propenamide and related compounds. Journal of Medicinal Chemistry 1996;39(23): 4608–21.

    Article  PubMed  CAS  Google Scholar 

  47. Schorlemmer H, Bartlett R, Kurrle R. Malononitrilamides: a new strategy of immunosuppression for allo-and xenotransplantation. Transplantation Proceedings 1998;30(3):884–

    Article  PubMed  CAS  Google Scholar 

  48. Bruneau JM, Yea CM, Spinella-Jaegle S, et al. Purification of human dihydro-orotate dehydrogenase and its inhibition by A77 1726, the active metabolite of leflunomide. Biochemical Journal 1998;336(Pt 2):299–303.

    PubMed  CAS  Google Scholar 

  49. Williamson RA, Yea CM, Robson PA, et al. Dihydroorotate dehydrogenase is a high affinity binding protein for A77 1726 and mediator of a range of biological effects of the immunomodulatory compound. Journal of Biological Chemistry 1995;270(38):22467–72.

    Article  PubMed  CAS  Google Scholar 

  50. Qi Z, Ekberg H. Malononitrilamides 715 and 279 prolong rat cardiac allograft survival, reverse ongoing rejection, inhibit allospecific antibody production and interact positively with cyclosporin. Scandinavian Journal of Immunology 1998; 48(4): 379–88.

    Article  PubMed  CAS  Google Scholar 

  51. Angermuller S, Loffler M. Localization of dihydroorotate oxidase in myocardium and kidney cortex of the rat. An electron microscopic study using the cerium technique. Histochemistry & Cell Biology 1995;103(4):287–92.

    CAS  Google Scholar 

  52. Simmonds HA. Diagnosis and treatment of inborn errors of purine and pyrimidine metabolism: an overview. Advances in Experimental Medicine & Biology 1994;370:1–6.

    CAS  Google Scholar 

  53. Gummert JF, Ikonen T, Morris RE. New Immunosuppressive Agents. J Am Soc Nephrol 1999;in press.

    Google Scholar 

  54. Kurrle R, Bartlett R, Ruuth E, Lauffer L, Schorlemmer HU. Malononitrilamides inhibit T-and B-cell responsiveness. Transplantation Proceedings 1996;28(6): 3053–6.

    PubMed  CAS  Google Scholar 

  55. Schorlemmer HU, Bartlett RR, Kurrle R. Malononitrilamides prevent the generation of oxygen radicals in mononuclear phagocytes and graft rejection in a rat model. Transplantation Proceedings 1999;31(l-2):851–3.

    Article  PubMed  CAS  Google Scholar 

  56. Kurrle R, Ruuth E, Bartlett R, Lauffer L, Schorlemmer HU. Malononitrilamides inhibit T-and B-cell responsiveness in different species. Transplantation Proceedings 1997;29(l-2): 1302–3.

    Article  PubMed  CAS  Google Scholar 

  57. Gregory CR, Silva HT, Patz JD, Morris RE. Comparative effects of malononitriloamide analogs of leflunomide on whole blood lymphocyte stimulation in humans, rhesus macaques, cats, dogs, and rats. Transplantation Proceedings 1998;30(4): 1047–8.

    Article  PubMed  CAS  Google Scholar 

  58. Nair RV, Cao W, Morris RE. Inhibition of smooth muscle cell proliferation in vitro by leflunomide, a new immunosuppressant, is antagonized by uridine. Immunology Letters 1995;47(3):171–4.

    Article  PubMed  CAS  Google Scholar 

  59. Xu X, Williams JW, Bremer EG, Finnegan A, Chong AS. Inhibition of protein tyrosine phosphorylation in T cells by a novel immunosuppressive agent, leflunomide. Journal of Biological Chemistry 1995;270(21): 12398–403.

    Article  PubMed  CAS  Google Scholar 

  60. Cao WW, Kao PN, Chao AC, Gardner P, Ng J, Morris RE. Mechanism of the antiproliferative action of leflunomide. A77 1726, the active metabolite of leflunomide, does not block T-cell receptor-mediated signal transduction but its antiproliferative effects are antagonized by pyrimidine nucleosides. Journal of Heart & Lung Transplantation 1995; 14(6 Pt 1): 1016–30.

    CAS  Google Scholar 

  61. Schorlemmer HU, Kurrle R, Bartlett RR. Malononitrilamides inhibit the development of various murine graft-vs-host diseases. Transplantation Proceedings 1996;28(6):3043–7

    PubMed  CAS  Google Scholar 

  62. Schorlemmer HU, Ruuth E, Kurrle R. The alloreactivity in the popliteal lymph node (PLN) assay is regulated by malononitrilamides (MNAs). International Journal of Tissue Reactions 1997; 19(3-4): 157–61.

    PubMed  CAS  Google Scholar 

  63. Schorlemmer HU, Kurrle R, Bartlett RR. The new immunosuppressants, the malononitrilamides MNA 279 and MNA 715, inhibit various graft-vs.-host diseases (GvHD) in rodents. Drugs Under Experimental & Clinical Research 1997; 23(5-6):167–73.

    CAS  Google Scholar 

  64. Schorlemmer HU, Kurrle R, Bartlett RR. Various graft vs. host diseases (GvHD) in rodents can be prevented and treated by malononitrilamides (MNAs). Inflammation Research 1997;46(Suppl 2):S165-6.

    Google Scholar 

  65. Schorlemmer HU, Schwab W, Ruuth E, Kurrle R. Acute skin graft rejection can be prevented and treated in rat models by malononitrilamides. Transplantation Proceedings 1996; 28(6): 3048–50.

    PubMed  CAS  Google Scholar 

  66. Lin Y, Segers C, Waer M. Efficacy of the malononitrilamide X 920715 as compared with leflunomide in cardiac alio-and xenotransplantation in rats. Transplantation Proceedings 1996;28(6):3036.

    PubMed  CAS  Google Scholar 

  67. Morris RE, Huang X, Cao W, Zheng B, Shorthouse RA. Leflunomide (HWA 486) and its analog suppress T-and B-cell proliferation in vitro, acute rejection, ongoing rejection, and antidonor antibody synthesis in mouse, rat, and cynomolgus monkey transplant recipients as well as arterial intimai thickening after balloon catheter injury. Transplantation Proceedings 1995;27(1):445–7.

    PubMed  CAS  Google Scholar 

  68. Morris RE, Huang X, Gregory CR, et al. Studies in experimental models of chronic rejection: use of rapamycin (sirolimus) and isoxazole derivatives (leflunomide and its analogue) for the suppression of graft vascular disease and obliterative bronchiolitis. Transplantation Proceedings 1995;27(3):2068–9.

    PubMed  CAS  Google Scholar 

  69. Schorlemmer HU, Kurrle R. Malononitrilamides reduce IgM and IgG xenoantibodies and prolong skin xenograft survival in a mouse-to rat model. Transplantation Proceedings 1998; 30(4): 976–9.

    Article  PubMed  CAS  Google Scholar 

  70. Schorlemmer HU, Kurrle R. Control of mouse-to-rat skin xenograft rejection by malononitrilamides. Transplantation Proceedings 1996;28(6):3037–9.

    PubMed  CAS  Google Scholar 

  71. Schorlemmer HU, Kurrle R. Combination therapy of malononitrilamides and tacrolimus (FK 506) induced long-term xenograft survival. Transplantation Proceedings 1998;30(8):4170–3

    Article  PubMed  CAS  Google Scholar 

  72. St Georgiev V. Enzymes of the purine metabolism: inhibition and therapeutic potential. Annals of the New York Academy of Sciences 1993;685:207–16.

    Article  PubMed  CAS  Google Scholar 

  73. Bantia S, Montgomery JA, Johnson HG, Walsh GM. In vivo and in vitro pharmacologic activity of the purine nucleoside Phosphorylase inhibitor BCX-34: the role of GTP and dGTP. Immunopharmacology 1996;35(1):53–63.

    Article  PubMed  CAS  Google Scholar 

  74. Montgomery JA, Niwas S, Dose JR, et al. Structure-based design of inhibitors of purine nucleoside Phosphorylase: 9-(arylmethyl) derivatives of 9-deazaguanine. J Med Chem 1993;36:55–69.

    Article  PubMed  CAS  Google Scholar 

  75. Allison AC, Eugui EM. Immunosuppressive and other Effects of Mycophenolic Acid and an Ester Prodrug, Mycophenolate Mofetil. Immunol Rev 1993;136:5–28.

    Article  PubMed  CAS  Google Scholar 

  76. Conry RM, Bantia S, Turner HS, et al. Effects of a novel purine nucleoside Phosphorylase inhibitor, BCX-34, on activation and proliferation of normal human lymphoid cells. Immunopharmacology 1998;40(1):1–9.

    Article  PubMed  CAS  Google Scholar 

  77. Iwata H, Wada Y, Walsh M, et al. In vitro study of BCX-34: a new human T-lymphocyte-specific purine Phosphorylase inhibitor. Transplantation Proceedings 1998;30(4):983–6.

    Article  PubMed  CAS  Google Scholar 

  78. Fujita T, Inoue K, Yamamoto S, et al. Fungal metabolites. Part II. A potent immunosuppressive activity found in Isaria sinclairii metabolite. Journal of Antibiotics 1994;47(2):208–15.

    Article  PubMed  CAS  Google Scholar 

  79. Fujita T, Hirose R, Yoneta M, et al. Potent immunosuppressants, 2-alkyl-2-amino-propane-1,3-diols. Journal of Medicinal Chemistry 1996;39(22):4451–9.

    Article  PubMed  CAS  Google Scholar 

  80. Kahan BD. FTY720: a new immunosuppressive agent with novel mechanism(s) of action. Transplantation Proceedings 1998;30(5):2210–3.

    Article  PubMed  CAS  Google Scholar 

  81. Suzuki S, Li XK, Shinomiya T, et al. The in vivo induction of lymphocyte apoptosis in MRL-lpr/lpr mice treated with FTY720. Clinical & Experimental Immunology 1997;107(1):103–11.

    Article  CAS  Google Scholar 

  82. Li XK, Shinomiya T, Enosawa S, Kakefuda T, Amemiya H, Suzuki S. Induction of lymphocyte apoptosis by a novel immunosuppressant FTY720: relation with Fas, Bcl-2 and Bax expression. Transplantation Proceedings 1997;29(l-2): 1267–8.

    Article  PubMed  CAS  Google Scholar 

  83. Chiba K, Hoshino Y, Suzuki C, et al. FTY720, a novel immunosuppressant possessing unique mechanisms. I. Prolongation of skin allograft survival and synergistic effect in combination with cyclosporine in rats. Transplantation Proceedings 1996;28(2):1056–9.

    CAS  Google Scholar 

  84. Wang ME, Tejpal N, Qu X, et al. Immunosuppressive effects of FTY720 alone or in combination with cyclosporine and/or sirolimus. Transplantation 1998;65(7): 899–905.

    Article  PubMed  CAS  Google Scholar 

  85. Suzuki S, Enosawa S, Kakefuda T, et al. A novel immunosuppressant, FTY720, with a unique mechanism of action, induces long-term graft acceptance in rat and dog allotransplantation. Transplantation 1996; 61(2): 200–5.

    Article  PubMed  CAS  Google Scholar 

  86. Yanagawa Y, Sugahara K, Kataoka H, Kawaguchi T, Masubuchi Y, Chiba K. FTY720, a novel immunosuppressant, induces sequestration of circulating mature lymphocytes by acceleration of lymphocyte homing in rats. II. FTY720 prolongs skin allograft survival by decreasing T cell infiltration into grafts but not cytokine production in vivo. Journal of Immunology 1998;160(ll):5493–9.

    CAS  Google Scholar 

  87. Chiba K, Yanagawa Y, Masubuchi Y, et al. FTY720, a novel immunosuppressant, induces sequestration of circulating mature lymphocytes by acceleration of lymphocyte homing in rats. I. FTY720 selectively decreases the number of circulating mature lymphocytes by acceleration of lymphocyte homing. Journal of Immunology 1998;160(10):5037–44.

    CAS  Google Scholar 

  88. Chiba K, Yanagawa Y, Kataoka H, Kawaguchi T, Ohtsuki M, Hoshino Y. FTY720, a novel immunosuppressant, induces sequestration of circulating lymphocytes by acceleration of lymphocyte homing. Transplantation Proceedings 1999;31(l-2):1230–3.

    Article  PubMed  CAS  Google Scholar 

  89. Li XK, Enosawa S, Kakefuda T, Amemiya H, Suzuki S. FTY720, a novel immunosuppressive agent, enhances upregulation of the cell adhesion molecular ICAM-1 in TNF-alpha treated human umbilical vein endothelial cells. Transplantation Proceedings 1997;29(l-2):1265–6.

    Article  PubMed  CAS  Google Scholar 

  90. Xu M, Antoniou EA, Afford SC, et al. Effect of peritransplant FTY720 alone or in combination with posttransplant FK 506 in a rat model of cardiac allotransplantation. Transplantation Proceedings 1997;29(7):2964–6.

    Article  PubMed  CAS  Google Scholar 

  91. Hoshino Y, Suzuki C, Ohtsuki M, Masubuchi Y, Amano Y, Chiba K. FTY720, a novel immunosuppressant possessing unique mechanisms. II. Long-term graft survival induction in rat heterotopic cardiac allografts and synergistic effect in combination with cyclosporine A. Transplantation Proceedings 1996;28(2): 1060–1.

    PubMed  CAS  Google Scholar 

  92. Masubuchi Y, Kawaguchi T, Ohtsuki M, et al. FTY720, a novel immunosuppressant, possessing unique mechanisms. IV. Prevention of graft versus host reactions in rats. Transplantation Proceedings 1996; 28(2): 1064–5.

    PubMed  CAS  Google Scholar 

  93. Stepkowski SM, Wang M, Qu X, et al. Synergistic interaction of FTY720 with cyclosporine or sirolimus to prolong heart allograft survival. Transplantation Proceedings 1998;30(5):2214–6.

    Article  PubMed  CAS  Google Scholar 

  94. Xu M, Pirenne J, Antoniou EA, Afford SC, D’Silva M, McMaster P. Effect of peritransplant FTY720 alone or in combination with post-transplant tacrolimus in a rat model of cardiac allotransplantation. Transplant International 1998; 11(4): 288–94.

    Article  PubMed  CAS  Google Scholar 

  95. Yuzawa K, Otsuka M, Taniguchi H, et al. Rescue effect of FTY720 on acute renal rejection in dogs. Transplantation Proceedings 1999;31(l-2):872.

    Article  PubMed  CAS  Google Scholar 

  96. Chueh SC, Tian L, Wang M, Wang ME, Stepkowski SM, Kahan BD. Induction of tolerance toward rat cardiac allografts by treatment with allochimeric class I MHC antigen and FTY720. Transplantation 1997;64(10): 1407–14.

    Article  PubMed  CAS  Google Scholar 

  97. Pyatt DW, Stillman WS, Irons RD. Hydroquinone, a reactive metabolite of benzene, inhibits NF-kappa B in primary human CD4+ T lymphocytes. Toxicology & Applied Pharmacology 1998; 149(2): 178–84.

    Article  CAS  Google Scholar 

  98. Lee DK, Kim B, Lee SG, et al. Momordins inhibit both AP-1 function and cell proliferation. Anticancer Research 1998; 18(1A): 119–24.

    PubMed  CAS  Google Scholar 

  99. Williams DH, Wilkinson SE, Purton T, Lamont A, Flotow H, Murray EJ. Ro 09-2210 exhibits potent anti-proliferative effects on activated T cells by selectively blocking MKK activity. Biochemistry 1998;37(26):9579–85.

    Article  PubMed  CAS  Google Scholar 

  100. Kuromitsu S, Fukunaga M, Lennard AC, Masuho Y, Nakada S. 3-(13-Hydroxytridecyl)-l-[13-(3-pyridyl)tridecyl]pyridinium chloride (YM-53792), a novel inhibitor of NF-AT activation. Biochemical Pharmacology 1997;54(9): 999–1005.

    Article  PubMed  CAS  Google Scholar 

  101. Nagata H, Ochiai K, Aotani Y, et al. Lymphostin (LK6-A), a novel immunosuppressant from Streptomyces sp. KY11783: taxonomy of the producing organism, fermentation, isolation and biological activities. Journal of Antibiotics 1997;50(7): 537–42.

    Article  PubMed  CAS  Google Scholar 

  102. Aotani Y, Nagata H, Yoshida M. Lymphostin (LK6-A), a novel immunosuppressant from Streptomyces sp. KYI 1783: structural elucidation. Journal of Antibiotics 1997;50(7):543–5.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Klupp, J., Morris, R.E. (2001). Experimental Immunosuppressive Agents. In: Thomson, A.W. (eds) Therapeutic Immunosuppression. Immunology and Medicine Series, vol 29. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0765-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0765-8_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3821-8

  • Online ISBN: 978-94-010-0765-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics