Skip to main content

Part of the book series: NATO Science Series ((NAII,volume 14))

Abstract

We discuss how superconductivity supresses the peak in the magnetic susceptibility at the nesting wave-vector. This effect may be responsible for the change of the magnetic structure in TmNi2 B2C under the magnetic field which destroys the superconductivity. It is argued that in antiferromagnets, the long wave-length part of spin-wave spectrum could be strongly modified by the superconductivity. The peculiarities of the tilted vortex structure in magnetic superconductors are also considered

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Maple, M.B. and Fisher, D. (Eds) (1982) Superconductivity in Ternary Compounds, Springer-Verlag, New York.

    Google Scholar 

  2. Lynn, J.W., Skathakumar, S., Huang, Q., Sinha, S.K., Hossain, Z., Gupta, L.C., Nagarajan, R. and Godart, C. (1997) Phys. Rev. B 55, 6584.

    Article  Google Scholar 

  3. Canfield, P.C., Gammel, L.P. and Bishop, D.J. (1988) Physics Today 51, 40.

    Article  Google Scholar 

  4. Norgaard, K., Eskildsen, M.R., Andresen, N.H., Jensen,J., Hedegard, P., Klausen, S.N., and Canfield, P.C. (2000) Phys. Rev. Lett. 84, 4982.

    Article  ADS  Google Scholar 

  5. Chang, L.J., Tomy, C.V., McPaul, M., Ritter, C. (1996) Phys. Rev. B 54, 9031.

    Article  Google Scholar 

  6. Rhee, J.Y., Wang, X. and Harmon, B.N. (1995), Phys. Rev. B 51, 15585.

    Article  ADS  Google Scholar 

  7. Anderson, P.W. and Suhl, H. (1959) Phys. Rev. 116, 898.

    Article  Google Scholar 

  8. Bulaevski, L.N., Buzdin, A.I., Kulic, M.L. and Panjukov, S.V. (1985) Advances in Physics, 34, 927.

    Article  Google Scholar 

  9. Kulic, M.C., Buzdin, A.I., and Bulaevski, L.N. (1997) Physics Lett. A 235, 285.

    Google Scholar 

  10. Abrikosov, A.A., Gorkov, L.P., and Dzyaloshinski, I. (1968) Methods of Quantum Field, Theory in Statistical Physics, Englewood Clitts, NJ.

    Google Scholar 

  11. Buzdin, A. (1984) JETP Lett. 40, 956.

    ADS  Google Scholar 

  12. Lifshitz, E.M., Pitaevskii, L.P.(1978) Statistical Physics II, Nauka, Moscow.

    Google Scholar 

  13. Bulaevski, L.N., Buzdin, A.I., Kulic, M.L. and Panjukov, S.V. (1985) Advances in Physics, 34, 175.

    Article  ADS  Google Scholar 

  14. Canfield, P.C., Bud'ko, S.L., and Cho, B.K.(1996) Physica C 262, 249.

    Google Scholar 

  15. Gammel, P.L., Barber, B., Lopez, D., Ramirez, A.P., Bishop, D.J., Bud'ko, S.L., and Canfield, P.C. (2000), Phys. Rev. Lett. 84, 2497.

    Article  ADS  Google Scholar 

  16. Buzdin, A.I., Bulaevski, L.N., and Krotov, S.S. (1983) Sov. Phys. JETP 58, 395.

    Google Scholar 

  17. Bulaevski, L.N., Buzdin, A.I., and Krotov, S.S. (1983) Sol. St. Comm. 48, 719.

    Article  Google Scholar 

  18. Ng, T.K., Varma, C.M. (1997) Phys. Rev. Lett. 78, 330.

    Article  ADS  Google Scholar 

  19. Kogan, V. G., Bullock, M., Harmon, B., Miranovic, P., Dobrosavlevic, L., Gammel, P.L. and Bishop, D.J. (1997) Phys. Rev. B 55, R8693.

    Article  Google Scholar 

  20. Cho, B.K., XU, Ming, Canfield, P.C., Miller, L.L. and Johnston, D.C. (1995) Phys. Rev. B 52, 3676.

    Article  Google Scholar 

  21. Buzdin, A.I. (1992), Journal of Alloys and Compounds 181, 357.

    Article  Google Scholar 

  22. Buzdin, A.I., Krotov S.S. and Kuptsov, D.A. (1991), Physica C 175, 42.

    Article  ADS  Google Scholar 

  23. Buzdin, A.I., and Simonov, A.S. (1990), Physica C 168, 421.

    Article  ADS  Google Scholar 

  24. Gammel, P.L., Bishop, D.J., Rice, J.P. Ginsberg, D.M. (1992) Phys. Rev. Lett. 68, 3343.

    Article  ADS  Google Scholar 

  25. Fulde, P., and Ferrell, R. (1964) Phys. Rev. A 135, 550.

    Google Scholar 

  26. Larkin, A.I., and Ovchinnikov, Yu.N. (1964) Sov. Phys. JETP 20, 762.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Buzdin, A. (2001). Superconductivity and Magnetism Coexistence in Borocarbides: Some Theoretical Aspects. In: Müller, KH., Narozhnyi, V. (eds) Rare Earth Transition Metal Borocarbides (Nitrides): Superconducting, Magnetic and Normal State Properties. NATO Science Series, vol 14. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0763-4_32

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0763-4_32

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6879-3

  • Online ISBN: 978-94-010-0763-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics