Skip to main content

Coexistence of Superconductivity and Magnetism in Borocarbides

  • Chapter
  • 459 Accesses

Part of the book series: NATO Science Series ((ASHT,volume 86))

Abstract

The interplay of rare-earth magnetism and superconductivity has been a topic of interest for many years. In cuprates as well as in the classical magnetic superconductors the superconducting state usually coexists with antiferromagnetic order on the rare-earth sublattice. Usually, their magnetic ordering temperature TN is much below the superconducting transition temperature T„ The discovery of superconducting borocarbides RT2B2C with R = Sc, Y, La, Th, U, Dy, Ho, Er, Tm or Lu and T = Ni, Pd or Pt (where not all of these combinations of R and T result in superconductivity) has reanimated the research on the coexistence of superconductivity and magnetic order. Most of these borocarbides crystallize in the tetragonal LuNi2B2C type structure which is an interstitial modification of the ThCr2Si2type. Contrary to the behavior of Cu in the cuprates Ni does not carry a magnetic moment in the borocarbides. Various types of antiferromagnetic structures have been found to coexist with superconductivity for R = Tm, Er, Ho and Dy in RNi2B2C. In the case of HoNi2B2C three different types of antiferromagnetic structures have been observed (i) a commensurate one with Ho moments aligned ferromagnetically within layers perpendicular to the tetragonalcaxis where consecutive layers are aligned in opposite directions, (ii) an incommensurate spiral along thecaxis and (iii) an incommensurate a-axis modulated structure that was shown to be important for the reentrant behavior whereas the other two structures coexist with the superconducting state. The variation of TN and Tcwith the de Gennes factor can well be drawn on straight lines from Lu to Gd and from Lu to Tb, respectively. Consequently, Tc> TN holds for Tm, Er, Ho and T, < TN for Dy. However, the study of various pseudoquaternary (R,R’)Ni2B2C compounds has shown that this so called de Gennes scaling is not universal for the borocarbides and it breaks down in some cases which is attributed to effects of crystalline electric fields, the difference in the R ionic radii or the effect of non-magnetic impurities in an antiferromagnetic superconductor. In an external magnetic field some of the RNi2B2C compounds show metamagnetic transitions combined with a large negative magnetoresistance.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mazumdar, Ch., Nagarajan, R., Godart, C., Gupta, L.C., Latroche, M., Dhar, S.K., Levy-Clement, C., Padalia, B.D., and Vijayaraghavan, R. (1993) Superconductivity at 12K in YNi-B SystemSolid State Commun. 87413–416.

    Article  ADS  Google Scholar 

  2. Nagarajan, R., Mazumdar, Ch., Hossain, Z., Dhar, S.K., Gopalakrishnan K.V., Gupta, L.C., Godait, C., Padalia, B.D., and Vijayaraghavan, R. (1994) Bulk Superconductivity at an Elevated Temperature (T, 12K) in a Nickel Containing Alloy System Y-Ni-B-CPhys. Rev. Lett. 72274–277.

    Article  ADS  Google Scholar 

  3. Cava, R.J., Takagi, H., Batlogg, B., Zandbergen, H.W., Krajewski, J.J., Peck Jr, W.F., van Dover, R.B., Felder, R.J., Siegrist, T., Mizuhashi, K., Lee, J.O., Eisaki, H., Carter, S.A., and Uchida, S. (1994) Superconductivity at 23K in Yttrium Palladium Boride CarbideNature 367146–148.

    Article  ADS  Google Scholar 

  4. Cava, R.J., Takagi, H., Zandbergen, H.W., Krajewski, J. J., Peck Jr, W.F., Siegrist, T., Bat-logg, B., van Dover, R.B., Felder, R.J., Mizuhashi, K., Lee, J.O., Eisaki, H.. and Uchida, S. (1994) Superconductivity in the Quaternary Intermetallic Compounds LnNi2B2CNature 367252–253.

    Google Scholar 

  5. Ginzburg, V.L. (1956) 0 Ferromagnetnykh Sverkhprovodnikakh.Zh. Eksp. Teor. Phys. 31202–210 (engl. Transl. (1957)Soy. Phys. JETP 4153).

    Google Scholar 

  6. Baltensperger, W., and Strässler, S. (1963) Superconductivity in AntiferromagnetsPhys. kondens. Materie 120–26.

    Google Scholar 

  7. Fischer, O. (1990) Magnetic Superconductors, in K.H.J. Buschow and Wohlfarth E.P. (eds.)Ferromagnetic Materialsvol. 5, Elsevier, Amsterdam p. 466.

    Google Scholar 

  8. Fulde, P. (1995)Electron Correlations in Molecules and SolidsSpringer, Berlin.

    Book  Google Scholar 

  9. Maple, M.B. (1995) Interplay between Superconductivity and MagnetismPhysicaB 215, 110–126.

    Google Scholar 

  10. Lynn, J.W., (1997) Rare Earth Magnetic Ordering in Exchange-Coupled SuperconductorsJ. Alloys and Comp. 250552–558.

    Article  Google Scholar 

  11. Gupta, L.C. (1998) Quaternary Borocarbide SuperconductorsPhil. Mag. B 77, 717–726.

    ADS  Google Scholar 

  12. Siegrist, T., Zandbergen, H.W., Cava, R.J., Krajewski, J.J., and Peck Jr, W.F. (1994) The Crystal Structure of Superconducting LuNi2B2C and the Related Phase LuNiBCNature 367254–256.

    Article  ADS  Google Scholar 

  13. Siegrist, T., Cava, R.J., Krajewski, J.J., and Peck Jr, W.F. (1994) Crystal Chemistry of the Series LnT2B2C (Ln = Rare Earth, T = Transition Element)J. Alloys and Comp. 216135–139.

    Article  Google Scholar 

  14. Brabers, J.H.V.J., Bakker, K., Nakotte, H., de Boer, F.R., Lenczowski, S.K.J., and Buschow, K.H.J. (1993) Giant Magnetoresistance in Polycrystalline SmMn2Ge2 J. Alloys & Comp. 199 Ll -L3.

    Article  Google Scholar 

  15. Steglich, F., Geibel, Chr., Modler, R. Lang, M., Hellmann, P., and Gegenwart, Ph. (1995) Classification of Strongly Correlated f-Electron SystemsJ. Low Temp. Phys. 99267–281.

    Article  ADS  Google Scholar 

  16. Mulder, F.M., Brabers, J.H.V.J., Coehoorn, R., Thiel, R.C., Buschow, K.H.J., and de Boer, F.R. (1995) ’“Gd Mössbauer Effect and Magnetic Properties of Novel RT2B2C Compounds with T = Ni, CoJ. Alloys and Comp. 217118–122.

    Google Scholar 

  17. Rupp, B., Rog1, P., and Hulliger, F. (1987) Magnetism and Structural Chemistry of Ternary Borides RECo2B2 (RE = Y, La, Pr, Nd, Sm, Gd, Tb, Dy, Ho, or Er) and Boron Substitution in (Y,Ce)Co2Si2BX J. Less Comm. Met. 135113–125.

    Article  Google Scholar 

  18. Kreyssig, A., Loewenhaupt, M. Freudenberger, J., Müller, K.-H., and Ritter, C. (1999) Evidence of Tetragonal to Orthorhombic Distortion of HoNi2B2C in the Magnetically Ordered StateJ. Appl. Phys. 856085–6060.

    Google Scholar 

  19. Detlefs, C., Islam, A.H.M.Z., Gu, T., Goldman, A.I., Stassis, C., Canfield, P.C., Hill, J.P., and Vogt, T. (1997) Magnetoelastic Tetragonal-to-Orthorhombic Distortion in ErNi2B2CPhys. Rev. B 567843–7846.

    Article  ADS  Google Scholar 

  20. Sarrao, J.L., de Andrade, M.C. Herrmann, J., Han, S.H., Fisk, Z., Maple, M.B., and Cava, R.J. (1994) Superconductivity to 21K in Intermetallic Thorium-Based Boride CarbidesPhysica C 22965–69.

    Article  Google Scholar 

  21. Ström, V., Kim, K.S., Grishin, A.M., and Rao, K.V. (1996) Superconducting Metastable Phase in Rapid Quenched Y-Pd-B-C Borocarbides, J.Appl. Phys. 795860–5862.

    Article  ADS  Google Scholar 

  22. Freudenberger, J. (2000) Paarbrechung in Seltenerd-Übergangsmetall-Borkarbiden, Thesis, TU Dresden.

    Google Scholar 

  23. Cava, R.J., Zandbergen, H.W., Batlogg, B., Eisaki, H., Takagi, H., Krajewski, J.J., Peck Jr, W.F., Gyorgy, E.M., and Uchida, S. (1994) Superconductivity in Lanthanum Nickel Boro-NitrideNature 372245–247.

    Article  ADS  Google Scholar 

  24. Zandbergen, H.W., Jansen, J., Cava, R.J., Krajewski, J.J., and Peck Jr, W.F. (1994) Structure of the 13-K Superconductor La3Ni2B2N3and the Related Phase LaNiBNNature 372759–761.

    Article  ADS  Google Scholar 

  25. Gao, L., Qiu, X.D., Cao, Y., Meng, R.L., Sun, Y.Y., Xue, Y.Y., and Chu, C.W. (1994) Superconductivity in(LuC)2(Ni2B2) and (LuC)(Ni2B2)Phys. Rev. B 509445–9448.

    Article  ADS  Google Scholar 

  26. Michor, H., Krendelsberger, R., Hilscher, G., Bauer, E., Dusek, C., Hauser, R., Naber, L., Werner, D., Rogl, P., and Zandbergen, H.W. (1996) Superconducting Properties of La3Ni2B2N3_6 Phys. Rev. B 54 9408–9420.

    Article  ADS  Google Scholar 

  27. Rukang, L., Chaoshui, X., Hong, Z., Bin, L., and Li, Y. (1995) The Preparation and Characterization of a New Layered Yttrium Nickel Borocarbide, JAlloys and Comp. 22353–55.

    Article  Google Scholar 

  28. .Drechsler, S.L., Shulga, S., and Rosner, H. (1998) Superconducting Transition Metal Boro-carbides ¡ª Challenging New Materials between Traditional Superconductors and HTSC’sThese Proceedings.

    Google Scholar 

  29. Sanchez, J.P., Vulliet, P., Godart, C., Gupta, L.C., Hossain, Z., and Nagarajan, R. (1996) Magnetic and Crystal-Field Properties of the Magnetic Superconductor DyNi2B2C from161Dy Mössbauer Spectroscopy,Phys. Rev. B 549421–9427.

    Article  ADS  Google Scholar 

  30. Lynn, J.W., Skanthakumar, S., Huang, Q., Sinha, S.K., Hossain, Z., Gupta, L.C., Nagarajan, R., and Godart, C. (1997) Magnetic Order and Crystal Structure in the Superconducting RNi2B2C MaterialsPhys. Rev. B 556584–6598.

    Article  ADS  Google Scholar 

  31. Pickett, W.E., and Singh D.J. (1994) LuNi2B2C: A Novel Ni-Based Strong-Coupling SuperconductorPhys. Rev. Lett. 723702–3705.

    Article  ADS  Google Scholar 

  32. Mattheiss, L.F. (1994) Electronic Properties of Superconducting LuNi2B2C and Related Boride Carbide PhasesPhys. Rev. B 4913279–13282.

    Article  ADS  Google Scholar 

  33. von Lips, H., Hu, Z.,Grazioli, C., Drechsler, S.-L., Behr, G., Knupfer, M., Golden, M.S., Fink, J., Rosner, H., and Kaindl, G. (1999) Polarization-Dependent X-Ray-Absorption Spectroscopy of Single-Crystal YNi2B2C SuperconductorsPhys. Rev.B 6011444–11448.

    Google Scholar 

  34. Detlefs, C., Islam, A.H.M.Z., Goldman, A.I., Stassis, C., Canfield, P.C., Hill, J.P., and Gibbs, D. (1997) Determination of Magnetic-Moment Direction using X-Ray Resonant Exchange ScatteringPhys. Rev. B 55R680–R683.

    Article  ADS  Google Scholar 

  35. Detlefs, C., Goldman, A.I., Stassis, C., Canfield, P.C., Cho, B.K., Hill, J.P., and Gibbs, D. (1996) Magnetic Structure of GdNi2B2C by Resonant and Nonresonant X-Ray ScatteringPhys. Rev. B 536355–6361.

    Article  ADS  Google Scholar 

  36. Hutchings, M.T. (1964) Point-Charge calculations of Energy Levels of Magnetic Ions in Crystalline Electric Fields, in Seitz and Turnbull (eds.)Solid State Physics 16p. 227.

    Google Scholar 

  37. Cho, B.K., Canfield, P.C., Miller, L.L., Johnston, D.C., Beyerman, W.P., and Yatskar, A. (1995) Magnetism and Superconductivity in Single-Crystal ErNi2B2CPhys. Rev. B52, 3684–3695.

    Google Scholar 

  38. Müller, K.-H., Kreyssig, A., Handstein, A., Fuchs, G., Ritter, C., and Loewenhaupt, M. (1997) Magnetic Structure and Superconductivity in (HoXY1_x)Ni2B2C, J. Appl. Phys. 61, 4240–4242.

    Article  Google Scholar 

  39. Goldman, A.I., Stassis, C., Canfield, P.C., Zarestky, J., Dervenagas, P., Cho, B.K., Johnston, D.C., and Sternlieb, B. (1994) Magnetic Pair Breaking in HoNi2B2CPhys. Rev. B 509668–9671.

    Article  ADS  Google Scholar 

  40. Tomy, C.V., Chang, L.J., Paul, D.McK., Andersen, N.H., and Yethiraj, M. (1995) Neutron Diffraction from HoNi2B2CPhysica B 213&214139–141.

    Google Scholar 

  41. Canfield, P.C., Bud’ko, S.L., Cho, B.K., Lacerda, A., Farrell, D., Johnston-Halperin, E., Kalatsky, V.A., and Pokrovsky, V.L. (1997) Angular Dependence of Metamagnetic Transitions in HoNi2B2CPhys. Rev. B 55970–976.

    Article  ADS  Google Scholar 

  42. Kreyssig, A., Freudenberger, J., Sierks, C., Loewenhaupt, M., Müller, K.-H., Hoser, A., and Stuesser, N. (1999) Field and Temperature Dependence of Magnetic Order in HoNi2 11B2CPhysicaB 259261590–591.

    Google Scholar 

  43. Gignoux, D. and Schmitt, D. (1995) Metamagnetism and Complex Magnetic Phase Diagrams of Rare Earth IntermetallicsJ Alloys and Comp. 225423–431.

    Article  Google Scholar 

  44. Müller, K.-H., Handstein,.A., Eckert, D., Fuchs, G., Nenkov, K., Freudenberger, J., Richter, M. and Wolf, M. (1998) Metamagnetismus and Large Magnetoresistance in TbNi2B2CPhysicaB 246247226–229.

    Google Scholar 

  45. Freudenberger, J., Fuchs, G., Nenkov, K., Handstein, A., Wolf, M., Kreyssig, A., Müller, K.-H., Loewenhaupt, M., and Schultz, L. (1998) Breakdown of de Gennes Scaling in Ho„Lu1_XNi2B2CJ. Magn. Magn. Mater. 187309–317.

    Article  ADS  Google Scholar 

  46. Freudenberger, J., Fuchs, G., Müller, K.-H., Nenkov, K., Drechsler, S.-L., Kreyssig, A., Rosner, H., Koepernik, K., Lipp, D., and Schultz, L. (1999) Diluted and Concentrated Isoelectronic Substitutional Effects in Superconducting R,Yi_„Ni2B2C CompoundsJ. Low Temp. Phys. 1171623–1627.

    Article  ADS  Google Scholar 

  47. Freudenberger, J., Kreyssig, A., Ritter, C., Nenkov, K., Drechsler, S.-L., Fuchs, G., Müller, K.-H., Loewenhaupt, M., and Schultz, L. (1999) Suppression of Superconductivity by Nonmagnetic Impurities, Structural properties and Magnetic Ordering in Ho,Lui_,Ni2B2CPhysica C 315 91–98.

    Article  ADS  Google Scholar 

  48. Freudenberger, J., Drechsler, S.-L., Fuchs, G., Kreyssig, A., Nenkov, Shulga, S.V., K., Müller, K.-H., and Schultz, L. (1998) Superconductivity and Disorder in Y„Lu1_%Ni2B2CPhysicaC 3061–6.

    Article  Google Scholar 

  49. Abrikosov, A.A. and Gor’kov, L.P. (1961) Contribution to the Theory of Superconducting Alloys with Paramagnetic ImpuritiesSoviet Physics JETP 121243–1253.

    Google Scholar 

  50. Cho, B.K., Canfield, P.C., and Johnston, D.C. (1996) Breakdown of de Gennes Scaling in (R1R’X)Ni2B2C CompoundsPhys. Rev. Lett. 77 163–166.

    Article  ADS  Google Scholar 

  51. Fulde, P., and Keller, J. (1982) Theory of Magnetic Superconductors, in M.B. Maple and O. Fischer (eds.)Superconductivity in Ternary Compounds IISpringer, Berlin.

    Google Scholar 

  52. Hossain, Z., Nagarajan, R., Dhar, S.K., and Gupta, L.C. (1999) Depression of Teby Non-Magnetic Impurities in Antiferromagnetic Superconductor with T, < TN PhysicaB259261606–607.

    Google Scholar 

  53. Michor, H., El-Hagary, M., Hauser, R., Bauer, E., Hilscher, G. (1999) The Interplay of the Superconducting and Antiferromagnetic State in DyNi2B2CPhysicaB 259–261604–605.

    Google Scholar 

  54. Morozov, A.I. (1980) Impurities in Antiferromagnetic SuperconductorsSoviet Physics Solid State 221974–1977.

    Google Scholar 

  55. Lai, C.C., Lin, M.S., You, Y.B., and Ku, H.C. (1995) Systematic Variation of Superconductivity for the Quaternary Borocarbide System RNi2B2C (R = Sc, Y, La, Th, U, or a lanthanide)Phys. Rev. B51 420–423.

    Article  ADS  Google Scholar 

  56. Dhar, S.K., Nagarajan, R., Hossain, Z., Tominez, E., Godart, C., Gupta, L.C., and Vijayaraghavan (1996) Anomalous Suppression of Teand Moderate Heavy Fermion Behaviour in YbNi2B2CSol. State Commun. 98985–989.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Müller, K.H. et al. (2001). Coexistence of Superconductivity and Magnetism in Borocarbides. In: Drechsler, SL., Mishonov, T. (eds) High-Tc Superconductors and Related Materials. NATO Science Series, vol 86. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0758-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0758-0_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6873-1

  • Online ISBN: 978-94-010-0758-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics