Electronic and Magnetic Properties of Cuprate Chains and Related Materials

From bandstructure to aspects of many-body physics in real materials
  • S. L. Drechsler
  • H. Rosner
  • J. Málek
  • H. Eschrig
Part of the NATO Science Series book series (ASHT, volume 86)


Band structure calculations for Cu03 and Cu02 chain compounds as well as for zigzag Cu204 double chain compounds are reported. These cuprate chains form the basic elements of a rich and beautiful variety of cuprate structures. From the dispersion of the antibonding band crossing the Fermi energy the exchange interaction is estimated and qualitative trends in the antiferromagnetic ordering at low temperatures are well explained. From the comparison of exact diagonalization studies of corresponding periodic chains with frequently used approximations a restricted validity of the latter with respect to the hole doping amount is found. The possibility of CDW-BOW states is discussed on the basis of self-consistent adiabatic studies. Chain aspects for superconductivity and the possible relationship to the stripe scenario are briefly discussed.


Hubbard Model Exact Diagonalization Chain Compound Transfer Integral CU02 Plane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rosner, H. (1999) Electronic Structure and exchange integrals of low-dimensional cupratesPh-D ThesisTechnische Universität DresdenGoogle Scholar
  2. 2.
    Muller-Buschbaum, H.J. (1991) Zur Kristallchemie von Kupferoxometallaten, Angew. Chem. 103 741–761; ¡ª (1991) The Crystal Chemistry of Copper Oxometallates, Angew. Chern. Int. Ed. Engl. 30723–744CrossRefGoogle Scholar
  3. 3.
    We shall not consider compounds such as CsCuO, SrCu2O2, and BaCu2O2 [2] exhibiting more or less pronounced zigzag Cu-O chains resulting from connected twofold coordinated O-Cu-O sticks where the Cu(I) state with almost filled 3d shell is involved.Google Scholar
  4. 4.
    Uehara, M., Nagata, T., Akimitsu, J., Takahashi, H., Mori, N., and Kinoshita, K. (1996) Superconductivity in the ladder material Sr0.4Ca13.6Cu24O41.84, J. Phys. Soc. Jpn. 65, 2764–2767The recently reported [5] superconductivity in a closely related system at 80 K has not yet been confirmed by other experimental groups.ADSCrossRefGoogle Scholar
  5. 5.
    Szymczak, R., Szymczak, H., Baran, M., Mosiniewizz-Szablewska, E., Leonyuk, L., Babona, G.-J., Maltsev, V., Shvanskaya, L. (1999) Magnetic and superconducting properties of doped (Sr,Ca)1oCu17O29-type single crystals, Physica C 311187–196ADSCrossRefGoogle Scholar
  6. 6.
    Motoyama, N., Eisaki, H., Uchida, S. (1996) Magnetic Susceptibility of ideal Spin 1/2 Heisenberg Antiferromagnetic Chain System, Sr2CuO3 and Sr2CuO3Phys. Rev. Lett. 763212–3215ADSCrossRefGoogle Scholar
  7. 7.
    Johnston, D.C. (1997) Normal-State Magnetic Properties of Single-Layer Cuprate High-Temperature Superconductors and Related Materials in K.H.J. Buschow (ed.) Handbook of Magnetic Materials 101–237Google Scholar
  8. 8.
    Kim, C., Shen, Z.-X, Motoyama, N., Eisaki, H., Uchida, S., Tohyama, T., and Maekawa, S. (1997) Separation of spin and charge excitation in one-dimensional SrCuO2, Phys. Rev. B 56, 15589–15595ADSCrossRefGoogle Scholar
  9. 9.
    Fujisawa, H., Yokoya, T., Takahashi, T., Miyasaka, S., Kibune, M., and Takagi, H. (1999) Angle-resolved photoemission study of Sr2CuO3 Phys. Rev. B 597358–7361ADSCrossRefGoogle Scholar
  10. 10.
    Oseroff, S.B., Cheong, S.-W., Aktas, B., Hundley, M.F., Fisk, Z., and Rupp, Jr. W. (1995) Spin-Peierls State versus N¨¦e] State in Doped CuGeO3, Phys. Rev. Lett. 74, 1450–1453ADSCrossRefGoogle Scholar
  11. 11.
    Dagotto, E. (1999) Experiments on Ladders Reveal a Complex Interplay between a Spin-Gaped Normal State and SuperconductivityCondensedMatterabstract cond-mat/990825022pp. and 41 FiguresGoogle Scholar
  12. 12.
    Meijer, G.I., Rossel, C., Henggeler, Keller, L., Fauth, F., Karpinski, J., Schwer, H., Kopnin, E.M., Wachter, P., Black, R.C., and Diederichs, J. (1998) Long-range antiferromagnetic order in quasi-one-dimensional Cao.83CuO2 and Sro.73CuO2, Phys. Rev. B 5814452–14455ADSCrossRefGoogle Scholar
  13. 13.
    Except the delafossite derived compounds RCuO2+6, R=La,Y and 0.5 < 6 <1, where the excess oxygen 6 is introduced into a triangular (hexagonal) lattice of CuO2 rods. For Ä <0.5 and R=Y one arrives at an orthorhombic structure containing a plane with a “sawtooth ” structure. For references see e.g. in:Ramirez, A.P., Cava, R.V., Krajewskii, J.J., and Peck, W.F. Jr., (1994) Groundstate of a triangular copper oxide system, Phys. Rev. B 49, 16082–16085.Google Scholar
  14. 14.
    . Fink, J., Golden, M.S., Knupfer, M., Böske, TH., Haffner, S., Neudert, R., Atzkern, S., Dürr, C., Hu, Z., Legner, S., Pichler, T., Rosner, H., Drechsler, S.-L., Málek, J., Hayn, R., Eschrig, H., Ruck, K., and G. Krabbes, G. (1999) The electronic structure of high-Ta superconductors: Introduction and recent studies of model compoundsthese Proceedings 1-38 Google Scholar
  15. 15.
    Ong, E.W., Kwei, G.H., Robinson, R.A., Ramakrishna B.L., and von Dreele, R.B. (1990) Long-range antiferromagnetic ordering in BiCuO4Phys. Rev. B 424255–4262Google Scholar
  16. 16.
    Maltsev, V. (1999) Growth of single crystals and crystal chemical features of Bi-containing alkaline-earth cuprates, Ph-D Thesis, Lomonosov Moscow State UniversityGoogle Scholar
  17. 17.
    Sasago, Y. Hase, M., Uchinokura, K., Tokunagai, M., and Miura, N., Discovery of a spin-singlet ground state with an energy gap in CaCuGe2O6Phys. Rev. B 523533–3539Google Scholar
  18. 18.
    Zheludev, A., Shirane,G., Sasago, Y. Hase, M., Uchinokura, K. (1996) Dimerized ground state and magnetic excitations in CaCuGe2O6, Phys. Rev. B 523533–3539Google Scholar
  19. 19.
    Muller-Buschbaum, H.J. (1977) Oxometallate mit ebener Koordination, Angew Chem.89, 704–717Google Scholar
  20. 20.
    Leonyuk, L.I, Babonas, G.-J., Pushcharovskii, D.Ju, and Maltsev, V.V., (1998) Main Subdivisions of the Structural Systematization of Cuprates, Crystallograph. Rep. 43, 256–270ADSGoogle Scholar
  21. 21.
    Tsukuda, I., Sasago, Y., Uchinokarura, K., Zheludev, A., Maslov, S., Shirane, G., Kakurai, K., and Ressouche, E. (1999) BaCu2Si2O7: A quasi-one-dimensional S=1/2 antiferromagnetic chain systemPhys. Rev. B 606601–6007ADSCrossRefGoogle Scholar
  22. 22.
    The crystal structures of compounds containing Ge or Si are characterized by the presence of a second structural element: the GeO4 or SiO4 tetrahedron, respectively. For this reason in the chemical literature the classification notation as germanates or silicates, respectively, is used. However, the band structure calculations for GeCuO3 and SiCuO3[23, 1] show clearly that the states near the Fermi energy which determine the electronic and magnetic properties are predominant of Cu and O character. The corresponding compounds are therefore strongly correlated charge transfer insulators in the sense of the classification of Sawatzky, Zaanen, and Allen. The Cue+ ions are in a strongly elongated oxygen octahedral environment and hence again dominated by the COP states. For our purposes one could therefore write for instance (GeO)CuO2 to emphasize the edge-shared COPs network instead of the standard CuGeO3 notation. Strictly speaking, these compounds should be correctly denoted as germanyl (silicyl) cuprates.Google Scholar
  23. 23.
    Mattheiss, L.F., (1994) Band picture of the spin-Peierls transition in the spin-1/2 linear chain cuprate GeCuO3Phys. Rev. B 4914050–14053ADSCrossRefGoogle Scholar
  24. 24.
    Rosner H., (1997) Electronic structure and magnetic properties of the linear chain cuprates Sr2CuO3 and Ca2CuO3, Phys. Rev. B 56, 3402–3412MathSciNetADSCrossRefGoogle Scholar
  25. 25.
    Rosner, H., (1998) Tight-binding parameters and exchange integrals of Ba2Cu304C12Phys. Rev. B 5713660–13666MathSciNetADSCrossRefGoogle Scholar
  26. 26.
    Neudert, R., Knupfer, M., Golden, M.S., Fink, J., Stephan, W., Penc, K., Motoyama, N., Eisaki, H., and Uchida, S. (1998) Manifestation of Spin-Charge Separation in the Dynamic Dielectric Response of One-Dimensional Sr2CuO3Phys. Rev. Lett. 81657–660ADSCrossRefGoogle Scholar
  27. 27.
    Rosner, H., Hayn, R., and Drechsler, S.-L., (1999) The electronic structure of Li2CuO2Physica B 259–2611001–1002;Neudert. R., Rosner, H.,Drechsler, S.-L., Kielwein, M., Sing, M., Hu, Z., Knupfer, M., Golden, M.S., Fink, J., Wicker, N., Merz, M., Schuppler, S., Motoyama, N., EisakiH., Uchida, S., Domke, M., and Kaindl, G. (1999) Unoccupied electronic structure of Li2CuO2, Phys. Rev. B 60, 13 413–13 417;Rosner, H. Divis, M., Koepernik, K., Drechsler, S.-L., and Eschrig, H. (2000) Comment on ‘The electronic structure of CaCuO2 and SrCuO2’J. Phys..: Condens. Matter 12, 5809–5812;Rosner, H., Johannes, M., and Drechsler, S.-L. (2001) Comment on: ‘Energy band structures of the low-dimensional antiferromagnets Sr2CuO3 and Sr2CuO2C12’J. of Appt. Phys.2 pp. submittedGoogle Scholar
  28. 28.
    Weht, R. and Pickett, W.E.; (1998) Extended moment formation and second neighbor coupling in Li2CuO2Phys. Rev. Lett. 812502–2505ADSCrossRefGoogle Scholar
  29. 29.
    Müller, K.-H., (1998) Magnetic Properties of Low-Dimensional CupratesThese Proceedings 51–80Google Scholar
  30. 30.
    Gr¨¦vin, B., Bertier, Y., Collin, G., and Mendels, P., (1998) Evidence for Charge Instability in the Cu03 chains of PrBa2Cu3O7 from 63’65CuNMR, Phys. Rev. Lett. 80,2405–2408ADSCrossRefGoogle Scholar
  31. 31.
    Bonner, J.C. and Fisher, M., (1964) Linear Magnetic Chains with Anisotropic CouplingPhys. Rev. 135A640–658ADSCrossRefGoogle Scholar
  32. 32.
    Edwards, H.L., Derro, A.L, Barr, A., Markert, J.T. and de Lozanne, A.L. (1994) Spatially Varying Energy in the CuO Chains of YBa2Cu3O7_xDetected by Scanning Tunneling SpectroscopyPhys. Rev. Lett. 751387–1390ADSCrossRefGoogle Scholar
  33. 33.
    Edwards, H.L., Barr, A., Markert, J.T. and de Lozanne, A.L. (1995) Modulations in the CuO Chain Layer of YBa2Cu3O7_s: Charge Density Waves?, Phys. Rev. Lett. 73, 1154–1157ADSCrossRefGoogle Scholar
  34. 34.
    de Jongh, L.J. and Miedema, A.R. (1974) Experiments on simple magnetic model systemsAdvances in Physics 23pp1–200ADSCrossRefGoogle Scholar
  35. 35.
    Winkelmann, M., Graf, H.A., and Andersen, N.H. (1994) Magnetic structure of MgCu2O3 and doping-induced spin reorientation in Mgi-x/2Cu2_x/203Phys. Rev. B 49310–317ADSCrossRefGoogle Scholar
  36. 36.
    Feldkemper, S., Weber, W., Schulenburg, J., and Richter, J. (1995) Ferromagnetic coupling in nonmetallic Cue+ compounds, Phys. Rev. B 52, 313–323ADSCrossRefGoogle Scholar
  37. 37.
    Shender, E.F., and Holdsworth P.C.W. (1996) Order by Disorder and Topology in Frustrated Magnetic Systems, in M. Millonas (ed.) Fluctuation and Order: the new synthesisSpringer-Verlag New York, 159–279Shender, E.F.,(1982) Soy. Phys. JETP56 178–200Google Scholar
  38. 38.
    Schüttler, H.-B. and Fedro, A.J. (1992) Copper-oxygen charge excitations and the effective-single-band theory of cuprate superconductorsPhys. Rev. B 457588–7591ADSCrossRefGoogle Scholar
  39. 39.
    Yushankhai, V.Y., Oudovenko, V.S., and Hayn, R. (1992) Proper reduction scheme to an extendedt-J model and the hole dispersion in Sr2CuO2Cl2Phys. Rev. B 5515 562–15 575Google Scholar
  40. 40.
    Eggert, S., AfHeck, I., and Takahashi, M. (1994) Susceptibility of the Spin-1/2 Heisenberg antiferromagnetic ChainPhys. Rev. Lett. 73 332–335.Google Scholar
  41. 41.
    Ami, T., Crawford, M.K., Harlow, R.L., Wang, Z.R., Johnston, D.C., Huang, Q., and Erwin, R.W. (1995) Magnetic susceptibility and low-temperature structure of the linear chain cuprate Sr2CuO3Phys. Rev. B 515994–6001ADSCrossRefGoogle Scholar
  42. 42.
    Eggert, S., (1996) Accurate determination of the exchange constant in Sr2CuO3 from recent theoretical resultPhys. Rev. B 535116–5118ADSCrossRefGoogle Scholar
  43. 43.
    Drechsler, S.-L., Málek, J., and Eschrig, H. (1997) Exact diagonalization study of the hole distribution in CuO3 chains within the four-band dp modelPhys. Rev. B 55606–620ADSCrossRefGoogle Scholar
  44. 44.
    Ole¡ì, A.M. and Grzelka, W. (1991) Electronic structure and correlation of CuO3 chains in YBa2Cu3O7Phys. Rev. B 449531–9540ADSCrossRefGoogle Scholar
  45. 45.
    Drechsler, S.-L., Málek, J., Zalis, S., and Ros¨¦szewski, K. (1996) Exchange integral and the charge gap of the linear-chain cuprate Sr2CuO3Phys. Rev. B 53, 11 328–11 331Google Scholar
  46. 46.
    Estes, W.E., Gavel, D.P., Hatfield, W.E., and Godjson, D.J. (1978) Inorg. Chem. 17,1415–1421Google Scholar
  47. 47.
    Drechsler, S.-L., Málek, J., Zalis, S., and Ros¨¦szewski, K. (1996) Superexchange, charge gap and lattice distortions of Sr(Ca)2Cu03- the interplay of e-e and e-ph interactionsJ. of Supercond. 9439–441ADSCrossRefGoogle Scholar
  48. 48.
    Suzuura, H., Yasuhura, H., Furusaki A.; Nagaosa N., and Y. Tokura, (1996) Singularities in Optical spectra of Quantum Spin ChainsPhys. Rev. Lett. 762579–2582ADSCrossRefGoogle Scholar
  49. 49.
    Lorenzana, J. and Eder, R., (1996) Dynamics of the 1D Heisenberg model and optical absorption of spinons in cuprate antiferromagnetic chains, Phys. Rev. B 55, R3358–R3361ADSCrossRefGoogle Scholar
  50. 50.
    Takigawa, M., Starykh, O.A., Sandvik, A.V., and Singh, R.R.P. (1996) Nuclear relaxation in the spin-1/2 antiferromagnetic chain compound Sr2CuO3 - comparison with between theories and experimentsPhys. Rev. B 5613681–13684ADSCrossRefGoogle Scholar
  51. 51.
    Drechsler, S.-L., Málek, J., Eschrig, H., Rosner, H., and Hayn, R., (1997) Electronic structure and BOW-CDW states of CuO3 chainsJ. of Supercond. 10393–396ADSCrossRefGoogle Scholar
  52. 52.
    Málek, J., Drechsler, S.-L., Paasch, G., and Hallberg, K. (1997) Solitonic approach to the dimerization problem in correlated one-dimensional systems, Phys. Rev. B 56R8467–R8470ADSCrossRefGoogle Scholar
  53. 53.
    Drechsler, S.-L., Málek, J., and Eschrig, H. (1993) Bipolarons and Polarexcitons in CuO3 chainsSynthet. Met. 574472–4477Google Scholar
  54. 54.
    Eschrig, H. and Drechsler, S.-L. (1991) A Microscopic Scenario for s-channel Superconductivity in layered CupratesPhysica C 17380–88ADSCrossRefGoogle Scholar
  55. 55.
    Paulsen, J., Eschrig, H., Drechsler, S.-L., and Málek, J. (1995) Electron-Lattice Interaction and Nonlinear Excitations in in Cuprate Structures, in K.A. Müller and D. Mihailovich (eds.), Anharmnonic Properties of High-T, Cuprates World Scientific Publ. Comp., Singapore, pp. 95–104Google Scholar
  56. 56.
    Drechsler, S.-L., Málek, J., Lavrentiev, M., and Köppel, H. (1994) On Optical Phonons in Alternating Chains with 3/4-filled Bands and Internal Degrees of Freedom - A simple Model for Ca2CuO3Phys. Rev. B 49233–243ADSCrossRefGoogle Scholar
  57. 57.
    Drechsler, S.-L., Málek, J., and Lavrentiev, M. (1993) Nonlinear excitations and phonons in alternating chains with mixed CDW-BOW ground state, Journ. de Phys. IV, Colloque C2, suppl¨¦ment au Journ. de Physique I 3, 273–280Google Scholar
  58. 58.
    Horsch, P. (1981) Correlation effects on bond alternation in polyacetylene, Phys. Rev. B 24, 7351 ¡ª 7360ADSCrossRefGoogle Scholar
  59. 59.
    Baeriswyl, D. and Maki, K. (1985) Electron correlations in polyacetylene, Phys. Rev. B 31, 6633–6642; Horsch, P. (1981)Phys. Rev. B 247351 ¡ª 7360.Google Scholar
  60. 60.
    Kuprievich, V.A. (1994) Two-electron self-consistent-field study of 2kF broken-symmetry states in correlated monatomic and diatomic Peierls-Hubbard chains, Phys. Rev. B 50, 16872–16879ADSCrossRefGoogle Scholar
  61. 61.
    Dixit, S.N. and Mazumdar, S. (1984) Phys. Rev. B 29 1824–1830Google Scholar
  62. 62.
    Hayden, G.W. and Soos, Z.G. (1988) Dimerization enhancement in one-dimensional Hubbard and Pariser-Parr-Pople modelsPhys. Rev. B 386075–6083ADSCrossRefGoogle Scholar
  63. 63.
    Waas, V., Büttner, H., and Voit, J. (1990) Finite-size studies of phases and dimerization in one-dimensional extended Peierls-Hubbard models, Phys. Rev. B 41, 9366–9376ADSCrossRefGoogle Scholar
  64. 64.
    Sandvik, A.W., (1999) Multi-chain Mean-field Theory of Quasi One-Dimensional Quantum Spin SystemsPhys. Rev. Lett 833069–3072Google Scholar
  65. 65.
    Schulz, H.J, (1996) Dynamics of Coupled Quantum Spin Chains, Phys. Rev. Lett. 77539–543Google Scholar
  66. 66.
    Zaliznyak, I.A., Broholm, C., Kibune, M., Nohara, M., and Takagi, H. (1999) Anisotropic spin freezing in the S=1/2 zigzag chain compound SrCuO2Phys. Rev. Lett. 835370–5373ADSCrossRefGoogle Scholar
  67. 67.
    Inagaki, S., and Fukuyama, H., (1983)J. Phys. Soc. Jpn. 523620–3630ADSCrossRefGoogle Scholar
  68. 68.
    Nakano, T., and Fukuyama, H., (1980)J. Phys. Soc. Jpn. 491679–3630ADSCrossRefGoogle Scholar
  69. 69.
    Kojima, K.M., Fudamoto, Y., Larkin, M., Luke, G.M; Larkin, M., Luke, G.M., Merrin, J., Nachumi, B., Uemura, Y.J., Motoyama, N., Eisaki, H., Uchida, S., Yamada, K., Endoh, Y., Hosoya, S., Sternlieb, B.J., and Shirane, G. (1997) Reduction of Ordered Moment and N¨¦el Temperature of Quasi-One-Dimensional Sr2CuO3and Ca2CuO3 Phys. Rev. Lett. 771787–1790ADSCrossRefGoogle Scholar
  70. 70.
    Matsuda, M., Katsuma, K., Kojima, K.M., Larkin, M., Luke, G.M., Merrin, J., Nachumi, B., Uemura, Y.J., Eisaki, H., Motoyama, N., Uchida, S., and Shirane, G. (1997) Magnetic phase transition in the S=1/2 zigzag-chain compound SrCuO2Phys. Rev. B 55R11 953-R 11 956Google Scholar
  71. 71.
    Keren, A., Kojima, K.M., Le, L.P., Luke, G.M; Wu, W.D., Uemura, Y.J., Tajima, S., and Uchida, S. (1995) Muon-spin-rotation measurements in the ‘infinite-chain Ca2CuO3Journ. of Magnetism and Magnetic Materials 140–1441641–1642Google Scholar
  72. 72.
    van Oosten, A. and Mila, F. (1997) Ab initio determination of exchange integrals and N¨¦el temperature in the chain cupratesChem. Phys. Lett. 359359–365Google Scholar
  73. 73.
    Drechsler, S.-L., Málek, J., Rosner, H., Neudert, R., Golden, M.S., Knupfer, M., Fink, J., Eschrig, H., Waidacher, C., and Hetzel, M. (1999) Hole Distribution in Cuprate ChainsJourn. of Low Temp. Phys. 117407–411ADSCrossRefGoogle Scholar
  74. 74.
    Okada, K., and Kotani, A. (1996) Intersite Coulomb Interactions in Quasi-OneDimensional Copper Oxides, J. Phys. Soc. Jpn. 66 341–344ADSCrossRefGoogle Scholar
  75. 75.
    Okada, K., Kotani, A., Maiti, K., and Sarma, D. (1996) Cu 2p Core-Level Photoemission Spectrum of Sr2CuO3i J. Phys. Soc. Jpn. 65 1844–1848ADSCrossRefGoogle Scholar
  76. 76.
    Teplov, M.A., Bakharev, O.N., Dooglav, A.V., Egorov, A.V., Krjukov, E.V., Mukhamedshin, I.R., Sakhratov, Yu.A., Brom, H.B., and Witteveen, J. (1997) Tm MMR and Cu NQR studies of phase separation in TmBaCuO compounds, in E. Kaidis, E. Liarokapis, and K.A. Müller (eds.) High -T a superconductivity 1996: Ten years after the discoveryNATO ASI Series, Series E: Applied Sciences - Vol. 343, Kluwer Academic Publishers, Dordrecht, pp. 531–562Google Scholar
  77. Dooglav, A.V., Alloul, H., Bakharev, O.N., Berthier, C., Egorov, A.V., Horvatic, M., Krjukov, E.V., Mendels, P., Sakhratov, Yu.A., and Teplov, M.A. (1998) Cu(2) nuclear resomnance evidence for a magnetic phase in aged 60-K superconductors RBa2Cu3O6+x(R=Tm, Y)Phys. Rev. B 5711 792–11 797Google Scholar
  78. 77.
    Emery, V.J., and Kivelson, S.A. (1999) Electronic structure of doped insulators and high temperature superconductivity, J. of Low Temp. Phys. 117 189–197ADSCrossRefGoogle Scholar
  79. 78.
    White, S.R., and Scalapino, D.J. (1997) Density Matrix Renormalization Group study of the striped phase in the 2D t - J modelPhys. Rev. Lett. 80 1272–1275.ADSCrossRefGoogle Scholar
  80. 79.
    Fujimori, A. Ino, A., Yoshida, T., Mizokawa T., Shen, Z.-X, aand Ueda, S. (2000) Fermi surface, pseudogaps, and dynamical stripes in Preprint cond-mat/0011293, 10 pp; Ino, A., Kim, C., Nakamura, M., Yoshida, T., Mizokawa, T., Shen, Z.-X., Fujimori, A., Kakeshita, T., Eisaki, H., and Uchida, S. (2000) Electronic structure of La2_xSrxCuO4 in the vicinity of the superconductor-insulator transitionPhys. Rev. B 624137–4141ADSGoogle Scholar
  81. 80.
    Brandt, H., (1999) Pinning of vortices and linear and nonlinear ac susceptibilities in high-TasuperconductorsThese Proceedings455–486Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • S. L. Drechsler
    • 1
  • H. Rosner
    • 1
  • J. Málek
    • 1
    • 2
  • H. Eschrig
    • 1
  1. 1.Institut für Festkörper-und Werkstofforschung DresdenDresdenGermany
  2. 2.Dept. of PhysicsUniversity of CaliforniaDavisUSA

Personalised recommendations