Wetting Phase Transitions and Superconductivity

The Role of Surface Enhancement of the Order Parameter in the GL Theory
  • J. O. Indekeu
  • F. Clarysse
  • E. Montevecchi
Part of the NATO Science Series book series (ASHT, volume 86)


The principal subject of these lectures is the precise analogy between a wetting phase transition in an adsorbed fluid and the interface delocalization transition in a type-I superconductor. Although there is up to now very sparse experimental evidence of this phenomenon in superconductors, the Ginzburg-Landau (GL) theory gives a detailed prediction of the “wetting” phase diagram for type-I materials that can in principle be verified directly by magnetization or resistivity measurements. In addition, themechanismresponsible for the transition can occur equally well in type-II superconductors, for which it leads to interesting modifications of the phase diagram of critical field versus temperature, including an increase of T, in zero field. A microscopic identification and derivation of the mechanism is still lacking, but at the phenomenological level of the GL theory the mechanism is the enhancement of the superconducting order parameter at the surface.


Phase Diagram Critical Field Physical Review Letter Partial Wetting Complete Wetting 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. K.Arutyunov, L. Van Look, M. Van Bael, and K.Temst (1998), unpublishedGoogle Scholar
  2. R. Blossey and J.O. Indekeu (1996) Interface potential approach to surface states in type-I superconductorsPhysical Review B 53p. 8599ADSCrossRefGoogle Scholar
  3. For a recent study of this quantity, see C.J. Boulter and J.O. Indekeu (1996) Accurate analytic expression for the surface tension of a type-I superconductorPhysical Review B 54p. 12407CrossRefGoogle Scholar
  4. We learned this historical note from E.H.Brandt (1998) private communication (Albena)Google Scholar
  5. F.Clarysse and J.O.Indekeu (1998), unpublishedGoogle Scholar
  6. See, e.g., P.-G. de Gennes (1966)Superconductivity of metals and alloysBenjamin, New YorkGoogle Scholar
  7. For a review, see P.-G. de Gennes (1985) Wetting: statics and dynamicsReviews of Modern Physics 57p. 827ADSCrossRefGoogle Scholar
  8. P.-G. de Gennes (1994) private communication (Amsterdam)Google Scholar
  9. For a review, see S. Dietrich (1988) Wetting phenomena, in C.Domb and J.Lebowitz(eds.) Phase TransitionsandCritical PhenomenaAcademic, London, Vol. 12p. 1Google Scholar
  10. R. Evans (1990) Fluids adsorbed in narrow pores: phase equilibria and structureJournal of Physics: Condensed Matter 2p. 8989ADSCrossRefGoogle Scholar
  11. H.J. Fink and W.C.H. Joiner (1969) Surface nucleation and boundary conditions in superconductorsPhysical Review Letters 23p. 120ADSCrossRefGoogle Scholar
  12. V.M. Fomin, J.T. Devreese and V.V.Moshchalkov (1998) Surface superconductivity in a wedgeEurophysics Letters 42p. 553ADSCrossRefGoogle Scholar
  13. H. Hilgenkamp (1998) private communication (Albena)Google Scholar
  14. J.O. Indekeu (1995) Introduction to wetting phenomenaActa Physica Polonica B 26:6p. 1065Google Scholar
  15. J.O. Indekeu and J.M.J.van Leeuwen (1995) Interface delocalization transition in type-I superconductorsPhysical Review Letters 75p. 1618; Wetting, prewetting and surface transitions in type-I superconductorsPhysica C 251p. 290ADSCrossRefGoogle Scholar
  16. For a tutorial article, see J.O. Indekeu and J.M.J. van Leeuwen (1997) “Wetting” phase transitions in type-I superconductorsPhysica A 236p. 114CrossRefGoogle Scholar
  17. H. Kellay, D. Bonn and J. Meunier (1993) Prewetting in a binary liquid mixturePhysical Review Letters 71p. 2607ADSCrossRefGoogle Scholar
  18. I.N. Khlyustikov and A.I. Buzdin (1987) Twinning-plane superconductivityAdvances in Physics 36p. 271ADSCrossRefGoogle Scholar
  19. J.D. Livingston and W. DeSorbo (1969) The intermediate state in type I superconductors, in R.D. Parks (ed.)SuperconductivityMarcel Dekker, New York, Vol. 2p. 1 235Google Scholar
  20. K.Maki (1998) private communication (Albena) V. Metlushko and C. Strunk (1996), unpublishedGoogle Scholar
  21. M.R. Moldover and J.W. Cahn (1980) An interface phase transition: complete to partial wettingScience 207p. 1073ADSCrossRefGoogle Scholar
  22. E.Montevecchi and J.O.Indekeu (1998), unpublishedGoogle Scholar
  23. V.V. Moshchalkov, L. Gielen, C. Strunk, R. Jonckheere, X. Qiu, C. Van Haesendonck, and Y. Bruynseraede (1995) Effect of sample topology on the critical fields of mesoscopic superconductors, Nature373p. 319ADSCrossRefGoogle Scholar
  24. D. Rainer (1998) private communication (Albena)Google Scholar
  25. D. Saint-James and P.-G. de Gennes (1963) Onset of superconductivity in decreasing fieldsPhysics Letters 7p. 306ADSCrossRefGoogle Scholar
  26. H. Wagner (1998) private communication (Leuven)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • J. O. Indekeu
    • 1
  • F. Clarysse
    • 1
  • E. Montevecchi
    • 1
  1. 1.Laboratorium voor Vaste-Stoffysica en MagnetismeKatholieke Universiteit LeuvenLeuvenBelgium

Personalised recommendations