Rotifera IX pp 75-83 | Cite as

Life table demography and population growth of Brachionus variabilis Hempel, 1896 in relation to Chlorella vulgaris densities

  • S. S. S. Sarma
  • S. Nandini
Conference paper
Part of the Developments in Hydrobiology book series (DIHY, volume 153)

Abstract

We studied the life history variables and population growth characteristics of Brachionus variabilis, which was recorded for the first time from Mexico. The animals were fed Chlorella, using five concentrations (0.25, 0.5, 1, 2 and 4 × 106 cells ml−1) at 25 °C. Food density was observed to have significant effect on life expectancy, average lifespan, gross reproductive rate, net reproductive rate, generation time and population growth rate. The average lifespan ranged from 3 to 6 days depending on the food density. The net reproductive rate ranged from 2 to 7 neonates female−1 d−1. The rate of population increase per day varied from 0.14 to 0.35. The highest net reproductive rate and average lifespan and life expectancy were recorded at Chlorella concentrations of 1 × 106 and 2 − 106 cells ml−1.

Key words

Brachionus variabilis population growth demography Chlorella Rotifera 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anonymous, 1985. Methods of measuring the acute toxicity of effluents to freshwater and marine organisms. U.S. Environment Protection Agency EPA/600/4-85/013.Google Scholar
  2. Borowitzka, M. A. & L. J. Borowitzka, 1988. Micro-algal Biotechnology. Cambridge University Press, London.Google Scholar
  3. Dumont, H. J. & S. S. S. Sarma, 1995. Demography and population growth of Asplanchna girodi (Rotifera) as a function of prey (Anuraeopsis fissa) density. Hydrobiologia 306: 97–107.CrossRefGoogle Scholar
  4. Dumont, H. J., S. S. S. Sarma & A. J. Ali, 1995. Laboratory studies on the population dynamics of Anuraeopsis fissa (Rotifera) in relation to food density. Freshwat. Biol. 33: 39–46.CrossRefGoogle Scholar
  5. Gliwicz, Z. M., 1990. Food thresholds and body size in cladocerans. Nature 343: 638–640.CrossRefGoogle Scholar
  6. Heerkloss, R. & S. Hlawa, 1995. Feeding biology of two brachionid rotifers: Brachionus quadridentatus and Brachionus plicatilis. Hydrobiologia 313/314: 219–221.CrossRefGoogle Scholar
  7. Iyer, N. & T. R. Rao, 1993. Effect of the epizoic rotifer Brachionus rubens on the population growth of three cladoceran species. Hydrobiologia 255/256: 325–332.CrossRefGoogle Scholar
  8. Iyer, N. & T. R. Rao, 1996. Responses of the predatory rotifer Asplanchna intermedia to prey species differing in vulnerability: Laboratory and field studies. Freshwat. Biol. 36: 521–533.CrossRefGoogle Scholar
  9. King, C. E., 1982. The evolution of lifespan. In Dingle, H. & J. P. Hegmann (eds), Proceedings in Life Sciences: Evolution and Genetics of Life Histories. Springer-Verlag, New York: 121–138.CrossRefGoogle Scholar
  10. Koste, W. & R. J. Shiel, 1987. Rotifera from Australian inland waters. 2. Epiphanidae and Brachionidae (Rotifera: Monogononta). Invertebr. Taxon. 7: 949–1021.CrossRefGoogle Scholar
  11. Krebs, C. J., 1985. Ecology. The Experimental Analysis of Distribution and Abundance. 3rd edn. Harper & Row, New York. PPGoogle Scholar
  12. Meyers, J. S., C. G. Ingresol, L. L. McDonald & M. S. Boyce, 1986. Estimating uncertainity in population growth rates: Jackknife vs bootstrap techniques. Ecology 67: 1156–1166.CrossRefGoogle Scholar
  13. Miracle M. R. & M. Serra, 1989. Salinity and tempertature influence in rotifer life history characteristics. Hydrobiologia 186/187: 81–102.CrossRefGoogle Scholar
  14. Okauchi, M. & K. Fukusho, 1984. Food value of minute alga, Tetraselmis tetrathele, for the rotifer Brachionus plicatilis culture: 1. Population growth with batch culture. Bull. Nat. Res. Inst. Aquacult. 5: 13–18.Google Scholar
  15. Pianka, E. R., 1988. Evolutionary Ecology. Harper & Row, New York, 3rd edn.Google Scholar
  16. Pourriot, R. & C. Rougier, 1975. The dynamics of a laboratory population of Brachionus dimidiatus (Bryce) (Rotatoria) in relation to food and temperature. Ann. Limnol. 11: 125–143.CrossRefGoogle Scholar
  17. Rothhaupt, K. O., 1990. Population growth rates of two closely related rotifer species effects of food quantity particle size and nutritional quality. Freshwat. Biol. 23: 561–570.CrossRefGoogle Scholar
  18. Sarma, S. S. S., 1991. Rotifers and aquaculture (Review). Envir. Ecol. 9:414–428.Google Scholar
  19. Sarma, S. S. S., 1999. Checklist of rotifers (Rotifera) from Mexico. Envir. Ecol. 17: 978–983.Google Scholar
  20. Sarma, S. S. S. & T. R. Rao, 1990. Population dynamics of Brachionus patulus Müller (Rotifera) in relation to food and temperature. Proc. Indian Acad. Sci. (Anim. Sci.) 99: 335–343.CrossRefGoogle Scholar
  21. Sarma, S. S. S. & T. R. Rao, 1991. The combined effects of food and temperature on the life history parameters of Brachionus patulus Müller (Rotifera). Int. Rev. ges. Hydrobiol. 76: 225–239.CrossRefGoogle Scholar
  22. Sarma, S. S. S., N. Iyer & H. J. Dumont, 1996. Competitive interactions between herbivorous rotifers: importance of food concentration and initial population density. Hydrobiologia 331: 1–7.CrossRefGoogle Scholar
  23. Sarma, S. S. S., P. S. Larios-Jurado & S. Nandini, 2001. Effect of three food types on the population growth of the rotifers Brachionus calyciflorus and Brachionus patulus (Rotifera: Brachionidae). Rev. Biol. Trop. 49: (In press)Google Scholar
  24. Stemberger, R. S. & J. J. Gilbert, 1985a. Body size, food concentration and population growth in planktonic rotifers. Ecology 66: 1151–1159.CrossRefGoogle Scholar
  25. Stemberger, R. S. & J. J. Gilbert, 1985b. Assessment of threshold food levels and population growth in planktonic rotifers. Arch. Hydrobiol. Beih. 21: 269–275.Google Scholar
  26. Walz, N., 1995. Rotifer populations in plankton communities: Energetics and life history strategies. Experientia 51: 437–453.CrossRefGoogle Scholar
  27. Wang, J. & D. Li, 1997. Comparative studies on principal parameters of population growth of five freshwater rotifers. Acta Hydrobiol. Sinica 21: 131–136.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • S. S. S. Sarma
    • 1
  • S. Nandini
    • 1
  1. 1.Division of Research and Postgraduate StudiesNational Autonomous University of Mexico, Campus IztacalaTlalnepantlaMexico

Personalised recommendations