Skip to main content

The 1+3 Covariant Approach to CMB Anisotropies

Erice Lectures 1999

  • Chapter
  • 225 Accesses

Part of the book series: NATO Science Series ((ASIC,volume 562))

Abstract

This article describes the 1+3 covariant approach to the study of CMB anisotropies using relativistic kinetic theory. We derive a complete set of frame - independent nonlinear equations for the Boltzmann radiation multipole hierarchy and linearise them about a Friedmann-Robertson-Walker model. Particular emphasis is given to the line of sight or null integration of the Boltzmann equation and how it compares to the usual time-like integrations presented in much of the CMB literature. We also discuss the calculation of CMB anisotropies in Bianchi models and how these studies affect the almost - Ehlers-Geren-Sachs result, crucial to foundations to modern CMB calculations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R K Sachs and A M Wolfe, Astrophys. J. 147, 73 (1967).

    Article  ADS  Google Scholar 

  2. C J Hogan, N Kaiser and M J Rees, Philos. Trans. R. Soc. London A307, 97 (1982).

    Article  ADS  Google Scholar 

  3. M Panek, Phys. Rev. D 34, 416 (1986).

    Article  ADS  Google Scholar 

  4. W R Stoeger, C-M Xu, G F R Ellis, and M Katz, Astrophys. J. 445, 17 (1995).

    Article  ADS  Google Scholar 

  5. W R Stoeger, G F R Ellis, and B G Schmidt, Gen. Relativ. Gravit. 23, 1169 (1991).

    Article  MathSciNet  ADS  Google Scholar 

  6. S W Hawking, Ap. J. 145, 544 (1966).

    Article  ADS  Google Scholar 

  7. G F R Ellis, in General Relativity and Cosmology, Proceedings of the XLVII Enrico Fermi Summer School, Ed. R K Sachs (Academic Press, New York, 1971).

    Google Scholar 

  8. J Ehlers, in General Relativity and Cosmology, Proceedings of the XLVII Enrico Fermi Summer School, Ed. R K Sachs (Academic Press, New York, 1971).

    Google Scholar 

  9. A Challinor, PhD Thesis (Cambridge University, 1997).

    Google Scholar 

  10. P K S Dunsby, M Bruni and G F R Ellis, Ap. J., 395, 54 (1992).

    Article  ADS  Google Scholar 

  11. R Maartens, T Gebbie and G F R Ellis, Cosmic microwave background anisotropies: nonlinear dynamics. Preprint astro-ph/9808163, (1998).

    Google Scholar 

  12. R W Lindquist, Ann. Phys. 37, 487 (1966).

    Article  ADS  MATH  Google Scholar 

  13. J M Stewart, Non Equilibrium Relativistic Kinetic Theory, Springer Lecture Notes in Physics 10 (Springer, Berlin, 1971).

    Google Scholar 

  14. G F R Ellis, D R Matravers and R Treciokas, Ann. Phys. 150, 455 (1983).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. G F R Ellis, R Treciokas and D R Matravers, Ann. Phys. 150, 487 (1983).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. F A E Pirani, in Lectures in General Relativity, Eds. S Deser and K Ford (Prentice-Hall, Englewood Cliffs, 1964).

    Google Scholar 

  17. K S Thorne, Rev. Mod. Phys. 52, 299 (1980).

    Article  MathSciNet  ADS  Google Scholar 

  18. J Ehlers, P Geren and R K Sachs, J. Math. Phys. 9, 1344 (1968).

    Article  ADS  Google Scholar 

  19. R Treciokas and G F R Ellis, Commun. Math. Phys. 23, 1 (1971).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. M L Wilson, Astrophys. J. 273, 2 (1983).

    Article  ADS  Google Scholar 

  21. T Gebbie and G F R Ellis, Covariant cosmic microwave background anisotropies. I: Algebraic relations for mode and multipole representations. astro-ph/9804916. To appear in Ann. Phys. (2000).

    Google Scholar 

  22. A D Challinor and A N Lasenby, Cosmic microwave background anisotropies in the CDM model: A covariant and gauge-invariant approach. Preprint astrro-ph/9804301, (1998).

    Google Scholar 

  23. R Maartens, G F R Ellis and W J Stoeger, Phys. Rev. D 51, 1525 (1995); Phys. Rev. D 51, 5942 (1995).

    Article  ADS  Google Scholar 

  24. W Hu and N Sugiyama, Phys. Rev. D 51, 2599 (1995).

    Article  ADS  Google Scholar 

  25. M Bruni, P K S Dunsby and G F R Ellis, Astrophys. J. 395, 34 (1992).

    Article  ADS  Google Scholar 

  26. T Gebbie, P K S Dunsby and G F R Ellis: Covariant cosmic microwave background anisotropies II: the almost-Friedmaan-Lemâtre model, To appear in Ann. Phys (2000).

    Google Scholar 

  27. A Challinor: Improved treatment of microwave background polarization in cosmological models, astro-ph/9911481 (1999).

    Google Scholar 

  28. A Lewis, A Challinor and A Lasenby: Efficient computation of CMB anisotropies in closed FRW models, astro-ph/9911177 (1999).

    Google Scholar 

  29. W Hu and M White, Astrophys. J. 471, 30 (1996).

    Article  ADS  Google Scholar 

  30. A Challinor and A Lasenby, Phys. Rev. D 58 023001 (1998).

    Article  ADS  Google Scholar 

  31. P K S Dunsby, Class. Quantum. Grav. 14, 3391 (1997).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  32. [32] E. R. Harrison, Vistas in Astronomy 2, 241 (1977).

    Google Scholar 

  33. P K S Dunsby, T Gebbie and G F R Ellis, Null and time-like analysis of cosmic background radiation anisotropies. In preparation (2000).

    Google Scholar 

  34. U S Nilsson, C Uggla, and J Wainwright: A dynamical systems approach to geodesics in Bianchi cosmologies, gr-qc/9908062 (1999).

    Google Scholar 

  35. U S Nilsson, W C Lim, C Uggla, and J Wainwright: An almost isotropic cosmic microwave background temperature does not imply an almost isotropic universe. Ap J Lett 522, L1 (1999), astro-ph/9904252.

    Google Scholar 

  36. W C Lim, U S Nilsson and J Wainwright: Anisotropic Universes with isotropic cosmic microwave background radiation, gr-qc/9912001 (1999).

    Google Scholar 

  37. W Stoeger, R Maartens and G F R Ellis: Proving almost-homogeneity of the universe: an almost-Ehlers, Geren and Sachs theorem. Ap J 443, 1 (1995).

    Article  ADS  Google Scholar 

  38. G F R Ellis, R Maartens, and S D Nel: “The expansion of the universe”. Man Not Roy Ast Soc 184, 439 (1978).

    ADS  Google Scholar 

  39. C Clarkson and R Barrett, gr-qc/9906097 (1999).

    Google Scholar 

  40. R Barrett and C Clarkson, gr-qc/9911235 (1999).

    Google Scholar 

  41. M Goliath and G F R Ellis, Phys Rev D 60, 023502 (1999),gr-qc/9811068.

    Article  MathSciNet  ADS  Google Scholar 

  42. H van Elst and G F R Ellis. Quasi-Newtonian Dust Cosmologies. CQG 15: 3545 (1998).

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ellis, G.F.R., Dunsby, P.K.S. (2001). The 1+3 Covariant Approach to CMB Anisotropies. In: Sánchez, N.G. (eds) Current Topics in Astrofundamental Physics: The Cosmic Microwave Background. NATO Science Series, vol 562. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0748-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0748-1_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6856-4

  • Online ISBN: 978-94-010-0748-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics