Skip to main content

Out of Equilibrium Fields In Selfconsistent Inflationary Dynamics. Density Fluctuations

  • Chapter
Current Topics in Astrofundamental Physics: The Cosmic Microwave Background

Part of the book series: NATO Science Series ((ASIC,volume 562))

  • 228 Accesses

Abstract

The physics during the inflationary stage of the universe is of quantum nature involvingextremely high energy densities. Moreover, it is out of equilibrium on a fastly expanding dynamical geometry. We present in these lectures non-perturbative out of equilibrium field theoretical methods in cosmological universes. Wethen study the non-linear dynamics of quantum fields in matter and radiation dominated FRW and de Sitter universes. For a variety of initial conditions, we compute the evolution of the quantum inflaton field, its large quantum fluctuations and the equation of state. We investigate the explosive particle production due to spinodal instabilities and parametric amplification in FRW and de Sitter universes with and without symmetry breaking. We show howthe particle production is sensitive to the expansion of the universe. In the large N limit for symmetry breaking scenarios, we determine generic late time fields behavior for any flat FRW and de Sitter cosmology. We show that the amplitude of the quantum fluctuations falloff in FRW with the square of the scale factor while the order parameter approaches a minimum of the potential in the same manner. We present a complete and numerically accessible renormalization scheme for the equation of motion and the energy momentum tensor in flat cosmologies. Furthermore, we consider an O(N) inflaton model coupled self-consistently to gravity in the semiclassical approximation, where the field is subject to ‘new inflation’ type initial conditions. Westudy the dynamics self-consistently and non-perturbatively with non-equilibrium field theory methods in the large N limit. We find that spinodal instabilities drive the growth of non-perturbatively large quantum fluctuations which shut off the inflationary growth of the scale factor. We find that a very specific combination of these large quantum fluctuations plus the inflaton zero mode assemble into a new effective field. This new field behaves classically and it is the object which actually rolls down. The metric perturbations during inflation are computed using this effective field and the Bardeen variable for superhorizon modes during inflation. We compute the amplitude and index for the spectrum of scalar density and tensor perturbations and argue that in all models of this type the spinodal instabilities are responsible for a ‘red’ spectrum of primordial scalar density perturbations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. H. Guth, Phys. Rev. D23, 347 (1981).

    ADS  Google Scholar 

  2. For thorough reviews of standard and inflationary cosmology see: E. W. Kolb and M. S. Turner, The Early Universe (Addison Wesley, Redwood City, C.A. 1990). A. Linde, Particle Physics and Inflationary Cosmology, (Harwood 1990) and ref. [5].

    Google Scholar 

  3. For more recent reviews see: M. S. Turner, astro-ph-9703197; astro-ph-9703196; astroph-9703174; astro-ph-9703161; astro-ph-9704062; astro-ph-9704024. A. Linde, in Current Topics in Astrofundamental Physics, Proceedings of the Chalonge Erice School, N. Sánchez and A. Zichichi Editors, Nato ASI series C, vol. 467, 1995, Kluwer Acad. Publ. A. R. Liddle, astro-ph-9612093, Lectures at the Casablanca School Morocco, 1996.

    Google Scholar 

  4. G. Smoot, in the Proceedings of the Vth. Erice Chalonge School on Astrofundamental Physics, p. 407–484, N. Sánchez and A. Zichichi eds., World Scientific, 1997. A. R. Liddle and D. H. Lyth, Phys. Rep. 231, 1 (1993). A. E. Lange et al., astro-ph/0005004, S. Hanany et al., astro-ph/0005123, P. de Bernardis et al., Nature 404 (2000) 955.

    Google Scholar 

  5. for reviews of inflation, see R. Brandenberger, Rev. of Mod. Phys. 57, 1 (1985); Int. J. Mod. Phys. A2, 77 (1987) and ref. [2].

    Article  ADS  Google Scholar 

  6. D. Boyanovsky, D. Cormier, H. J. de Vega, R. Holman, S. P. Kumar, ‘Out of equilibrium fields in inflationary dynamics, density fluctuations’, in Proceedings of the NATO ASI ‘Current Topics in Astrofundamental Physics: Primordial Cosmology’, edited by N. Sánchez and A. Zichichi, vol C511, Kluwer Dordrecht, 1998.

    Google Scholar 

  7. D. Boyanovsky and H. J. de Vega, Phys. Rev. D47, 2343 (1993).

    ADS  Google Scholar 

  8. D. Boyanovsky, H. J. de Vega, R. Holman, D.-S. Lee and A. Singh, Phys. Rev. D51, 4419 (1995); D. Boyanovsky, M. D'Attanasio, H. J. de Vega, R. Holman and D. S. Lee, Phys. Rev. D52, 6805 (1995); For reviews see, D. Boyanovsky, H. J. de Vega and R. Holman, in the Proceedings of the Second Paris Cosmology Colloquium, Observatoire de Paris, June 1994, p. 127–215, H. J. de Vega and N. Sanchez Editors, World Scientific, 1995; D. Boyanovsky, M. DÁttanasio, H. J. de Vega, R. Holman and D.-S. Lee, ‘New aspects of reheating’, in the Proceedings of the Erice Chalonge School,’ string Gravity and Physics at the Planck Energy Scale’, NATO ASI, N. Sanchez and A. Zichichi Editors, Kluwer 1996, p. 451–492.

    ADS  Google Scholar 

  9. D. Boyanovsky, H.J. de Vega, R. Holman, J.F.J. Salgado, Phys. Rev. D54, 7570 (1996). D. Boyanovsky, H. J. de Vega and R. Holman in the Proceedings of the Vth. Erice Chalonge School on Astrofundamental Physics, p. 183-270, N. Sánchez and A. Zichichi eds., World Scientific, 1997. D. Boyanovsky, C. Destri, H.J. de Vega, R. Holman and J.F.J. Salgado, Phys. Rev. D57, 7388 (1998).

    ADS  Google Scholar 

  10. D. Boyanovsky, H. J. de Vega, R. Holman and J. Salgado, Phys. Rev. D59, 125009 (1999).

    ADS  Google Scholar 

  11. D. Boyanovsky, H. J. de Vega, and R. Holman, Phys. Rev. D49, 2769 (1994).

    ADS  Google Scholar 

  12. D. Boyanovsky, D. Cormier, H. J. de Vega, R. Holman, A. Singh, M. Srednicki, Phys. Rev. D56, 1939 (1997).

    ADS  Google Scholar 

  13. D. Boyanovsky, D. Cormier, H. J. de Vega and R. Holman, Phys. Rev. D55, 3373 (1997).

    ADS  Google Scholar 

  14. D. Boyanovsky, D. Cormier, H. J. de Vega, R. Holman and S. P. Kumar, Phys. Rev. D57, 2166 (1998).

    ADS  Google Scholar 

  15. D. Boyanovsky, M. DÁttanasio, H. J. de Vega and R. Holman, Phys. Rev. D54, 1748 (1996), and references therein.

    ADS  Google Scholar 

  16. D. Boyanovsky and H. J. de Vega, Phys. Rev. D61, 105014 (2000).

    ADS  Google Scholar 

  17. D.T. Son, Phys. Rev. D54, 3745 (1996); hep-ph/9601377.

    ADS  Google Scholar 

  18. D.l. Kaiser, Phys. Rev D53, 1776 (1996), D56, 706 (1997) and D57, 702 (1998).

    ADS  Google Scholar 

  19. J. Schwinger, J. Math. Phys. 2, 407 (1961); P. M. Bakshi and K. T. Mahanthappa, J. Math. Phys. 4, 1 (1963); ibid, 12; L. V. Keldysh, Sov. Phys. JETP 20, 1018 (1965); A. Niemi and G. Semenoff, Ann. of Phys. (N.Y.) 152, 105 (1984); Nucl, Phys. B [FSlO], 181 (1984); E. Calzetta, Ann. of Phys. (N.Y.) 190, 32 (1989); R. D. Jordan, Phys. Rev. D33, 444 (1986); N. P. Landsman and C. G. van Weert, Phys. Rep. 145, 141 (1987); R. L. Kobes and K. L. Kowalski, Phys. Rev. D34, 513 (1986); R. L. Kobes, G. W. Semenoff and N. Weiss, Z. Phys. C29, 371 (1985).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. For non-equilibrium methods in cosmology see, for example: E. Calzetta and B.-L. Hu, Phys. Rev. D35, 495 (1988); ibid D37, 2838 (1988); J. P. Paz, Phys. Rev. D41, 1054 (1990); ibid D42, 529 (1990); B.-L. Hu in Bannf/Cap Workshop on TFT, ed. by F.C. Khanna, R. Kobes, G. Kunstatter, H. Umezawa, World Scientific, Singapore, 1994, p.309 and in the Proceedings of the Second Paris Cosmology Colloquium, Observatoire de Paris, edited by H. J. de Vega and N. Sanchez (World Scientific, Singapore, 1995), p.111 and references therein.

    MathSciNet  ADS  Google Scholar 

  21. H. Leutwyler and S. Mallik, Ann. of Phys. (N.Y.) 205, 1 (1991).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. O. Eboli, R. Jackiw and S.-Y. Pi, Phys. Rev. D37, 3557 (1988); M.Samiullah, O. Eboli and S-Y. Pi, Phys. Rev. D44, 2335 (1991). J. Guven, B. Liebermann and C. Hill, Phys. Rev. D39, 438 (1989).

    ADS  Google Scholar 

  23. N. D. Birrell and P.C.W. Davies, Quantum fields in curved space (Cambridge Univ. Press, Cambridge, 1986).

    Google Scholar 

  24. J. Baacke, K. Heitmann and C. Patzold, Phys. Rev. D55, 2320 (1997), D56, 6556 (1997), D57, 6398 and 6406(1998).

    ADS  Google Scholar 

  25. M. Abramowitz and I.E. Stegun (eds.), Handbook of Mathematical Functions (National Bureau of Standards, Washington, D.C., 1972), chapter 13.

    MATH  Google Scholar 

  26. N. Turok, Ue-Li Pen, U. Seljak, Phys. Rev. D58, 023506 (1998). A. Albrecht, R. A. Battye, J. Robinson, Phys. Rev. Lett. 79, 4736 (1997). B. Allen, R. R. Caldwell, S. Dodelson, L. Knox, E. P. S. Shellard, A. Stebbins, Phys. Rev. Lett. 79, 2624 (1997). R. Durrer, astro-ph/0003363.

    ADS  Google Scholar 

  27. D. H. Lyth, hep-ph-9609431 (1996). S. Dodelson, W. H. Kinney and E. W. Kolb, Phys. Rev. D56, 3207 (1997).

    ADS  Google Scholar 

  28. A.D. Linde, Phys. Lett. B116, 335 (1982). A. Vilenkin and L. H. Ford, Phys. Rev. D26, 1231 (1982). A. Vilenkin, Nucl. Phys, B226, 504 (1983); Nucl. Phys. B226, 527 (1986).

    MathSciNet  ADS  Google Scholar 

  29. A. Vilenkin, Phys. Lett. B115, 91 (1982).

    ADS  Google Scholar 

  30. P. J. Steinhardt and M. S. Turner, Phys. Rev. D29, 2162, (1984).

    ADS  Google Scholar 

  31. A. Guth and S-Y. Pi, Phys. Rev. D32, 1899 (1985).

    MathSciNet  ADS  Google Scholar 

  32. For non-equilibrium methods in different contexts see for example: F. Cooper, J. M. Eisenberg, Y. Kluger, E. Mottola, B. Svetitsky, Phys. Rev. Lett. 67, 2427 (1991); F. Cooper, J. M. Eisenberg, Y, Kluger, E. Mottola, B. Svetitsky, Phys. Rev. D48, 190 (1993).

    Article  ADS  Google Scholar 

  33. F. Cooper and E. Mottola, Mod. Phys. Lett. A 2, 635 (1987); F. Cooper, S. Habib, Y. Kluger, E. Mottola, J. P. Paz, P. R. Anderson, Phys. Rev. D50, 2848 (1994). F. Cooper, S.-Y. Pi and P. N. Stancioff, Phys. Rev. D34, 3831 (1986). F. Cooper and E. Mottola, Phys. Rev. D36, 3114 (1987). F. Cooper, Y. Kluger, E. Mottola, J. P. Paz, Phys. Rev. D51, 2377 (1995).

    Article  ADS  Google Scholar 

  34. S. A. Ramsey, B. L. Hu, Phys. Rev. D56, 678 (1997).

    MathSciNet  ADS  Google Scholar 

  35. D. Boyanovsky, H. J. de Vega and R. Holman, Phys. Rev. D51, 734 (1995). D. Boyanovsky, H. J. de Vega, R. Holman and S. Prem Kumar, Phys. Rev. D56, 3929 and 5233 (1997). The last reference under [33]. J. Lesgourgues, D. Polarski and A. A. Starobinsky, Nucl. Phys. B497, 479 (1997).

    ADS  Google Scholar 

  36. L. P. Grishchuk, Phys. Rev. D 45, 4717 (1992).

    Google Scholar 

  37. V. F. Mukhanov, H. A. Feldman and R. H. Brandenberger, Phys. Rep. 215, 293 (1992).

    Article  MathSciNet  Google Scholar 

  38. J. Bardeen, Phys. Rev. D22, 1882 (1980).

    MathSciNet  ADS  Google Scholar 

  39. R. R. Caldwell, Class. Quant. Grav. 13, 2437 (1995). J. Martin and D. J. Schwarz, Phys. Rev. D57 (1998) 3302.

    Article  ADS  Google Scholar 

  40. K. M. Gorski, A. J. Banday, C. L. Bennett, G. Hinshaw, A. Kogut and G. F. Smoot, astro-ph-9601063.

    Google Scholar 

  41. L. P. Grishchuk, Phys. Rev. D. 52, 5549, (1995); Proceedings of the Erice Chalonge School NATO ASI on’ string Gravity and Physics at the Planck Scale’, Ed. N. Sanchez and A. Zichichi, (Kluwer, 1996), p. 369; Phys. Rev. D53 (1996) 6784; Proceedings of the NATO ASI on ‘Current Topics in Astrofundamental Physics’, Ed. N. Sanchez and A. Zichichi (Kluwer, 1995), p. 205. Rev. Mod. Phys. 69, 373, (1997).

    Article  Google Scholar 

  42. I. Zlatev, G. Huey and P. J. Steinhardt, Phys. Rev. D 57, 2152 (1998).

    Article  ADS  Google Scholar 

  43. F. Cooper, S. Habib, Y. Kluger, E. Mottola, J. P. Paz, and P. R. Anderson, Phys. Rev. D50, 2848 (1994).

    ADS  Google Scholar 

  44. J. Avan and H. J. de Vega, Nucl. Phys. B224, 61 (1983). M. B. Halpern, Nucl, Phys. B 173, 504 (1980).

    Article  ADS  Google Scholar 

  45. D. Boyanovsky, H. J. de Vega, R. Holman, S. Prem Kumar and R. D. Pisarski, Phys. Rev. D57, 3653 (1998). F. J. Cao and H. J. de Vega, hep-ph/9911537.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Boyanovsky, D., de Vega, H.J. (2001). Out of Equilibrium Fields In Selfconsistent Inflationary Dynamics. Density Fluctuations. In: Sánchez, N.G. (eds) Current Topics in Astrofundamental Physics: The Cosmic Microwave Background. NATO Science Series, vol 562. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0748-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0748-1_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6856-4

  • Online ISBN: 978-94-010-0748-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics