Advertisement

Light Propagation Characteristics of Defect Waveguides in a Photonic Crystal Slab

  • Toshihiko Baba
  • Naoyuki Fukaya
Part of the NATO Science Series book series (ASIC, volume 563)

Abstract

A channel waveguide composed of a series of defects in a uniform photonic crystal (PC) is an attractive device, in which two important properties of PCs, i.e., photonic bandgaps (PBGs) and defect states, are applied [1]. In conventional index-type waveguides, the guided light suffers large radiation loss at steep bends due to the weak optical confinement. It strongly restricts the flexibility of the optical wiring and makes photonic circuits so large as to be of the cm2 order. The PC waveguide has the potential for eliminating this restriction. It allows low-loss steep bends, Y-blanches, and short couplers owing to the strong optical confinement of PC claddings[2–4].

Keywords

Photonic Crystal Light Cone Transverse Magnetic Transverse Electric Rectangular Waveguide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Meade, R. D., Devenyi, A., Joannopoulos, J. D., Alerhand, O. L., Smith, D.A., and Kash, K., “Novel applications of photonic band gap materials: low-loss bends and high Q cavities”, Appl. Phys. Lett. 75, 4753–4755 (1994).Google Scholar
  2. 2.
    Mekis, A., Chen, J. C., Kurand, I., Fan, S., Villeneuve, P.R., and Joannopoulos, J. D., “High transmission through sharp bends in photonic crystal waveguides”, Phys. Rev. Lett. 77, 3787–3790 (1996).ADSCrossRefGoogle Scholar
  3. 3.
    Yonekura, J., Ikeda, M., and Baba, T. “Analysis of finite 2-D photonic crystals of columns and lightwave devices using the scattering matrix method”, J. Lightwave Technol. 17, 1500–1508 (1999).ADSCrossRefGoogle Scholar
  4. 4.
    Chutinan, A., and Noda, S., “Design for waveguides in three-dimensional photonic crystals”, Jpn. J. Appl. Phys. 39, 2353–2356 (2000).ADSCrossRefGoogle Scholar
  5. 5.
    Lin, S. Y., Chow, E., Hietara, V., Villeneuve, P.R., and Joannopoulos, J. D., “Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal”, Science 282, 274–276 (1998).ADSCrossRefGoogle Scholar
  6. 6.
    Temelkuran, B., and Ozbay, E., “Experimental demonstration of photonic crystal based waveguides”, Appl. Phys. Lett. 74, 486–488 (1999).ADSCrossRefGoogle Scholar
  7. 7.
    Baba, T., Fukaya, N., and Yonekura, J., “Observation of light transmission in photonic crystal waveguides with bends”, Electron. Lett. 27, 654–655 (1999).CrossRefGoogle Scholar
  8. 8.
    Johnson, S. G., Fan, S., Villeneuve, P.R., and Joannopoulos, J. D., “Guided modes in photonic crystal slabs”, Phys. Rev. B 60, 5751–5758 (1999).ADSCrossRefGoogle Scholar
  9. 9.
    Chutinan, A, and Noda, A., “Waveguides and waveguide bends in two-dimensional photonic crystal slabs”, Phys. Rev. B 62, 4488–4492 (2000).ADSCrossRefGoogle Scholar
  10. 10.
    Smith, C. J. M., Benisty, H., Rattier, M., Olivier, S., Krauss, T. F., De La Rue, R.M., Houdre, R., Oesterle, U. and Weisbuch, C., “Quantitative and qualitative analysis of 2D photonic crystal waveguides”, Dig. Int. Workshop on Photonic and Electromagnetic Crystal Structures, F3–3 (2000).Google Scholar
  11. 11.
    Matsuoka, T., Yoshikuni, Y., and Nagai, H., “Verification of the light phase effect at the facet on DFB laser properties”, IEEE J. Quantum Electron. QE-21, 1880–1886 (1985).ADSCrossRefGoogle Scholar
  12. 12.
    Suematsu, Y., and Furuya, K., “Scattering loss in thin film waveguides”, Oyobutsuri 42, 938–942 (1973, in Japanese).Google Scholar
  13. 13.
    Sakai, A., Hara, G., and Baba, T., “Sharply bent optical waveguide on silicon-on-insulator substrate”, Proc. SPIE Physics and Simulation of Optoelectronic Devices, OE09–562 (2001).Google Scholar
  14. 14.
    Shinya, A., Notomi, M. and Yokohama, I., “3D-FDTD calculations for 2D photonic crystal with finite thickness”, Dig. Int. Workshop on Photonic and Electromagnetic Crystal Structures, T4–8 (2000).Google Scholar
  15. 15.
    Benisty, H., Rattier, M., Weisbuch, C., Krauss, T. K., Smith, C. J. M., De La Rue, R.M., Cassagne, D., Beraud, A. and Jouanin, C., “Photonic crystals for integrated optics: can we use conventional semiconductor waveguides?”, Dig. Int. Workshop on Photonic and Electromagnetic Crystal Structures, F3–2 (2000).Google Scholar
  16. 16.
    Fujita, M., Sakai, A., and Baba, T., “Ultra-small and ultra-low threshold microdisk injection laser — design, fabrication, lasing characteristics and spontaneous emission factor”, IEEE J. Sel. Top. Quantum Electron. 5, 673–681 (1999).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • Toshihiko Baba
    • 1
  • Naoyuki Fukaya
    • 1
  1. 1.Division of Electrical and Computer EngineeringYokohama National UniversityHodogayaku, YokohamaJapan

Personalised recommendations