Skip to main content

Understanding some Photonic Band Gap Problems by Using Perturbation

  • Chapter
Book cover Photonic Crystals and Light Localization in the 21st Century

Part of the book series: NATO Science Series ((ASIC,volume 563))

  • 902 Accesses

Abstract

During the past decade, a significant effort has been devoted to the study of photonic crystals (PC) [1–2], The existence of a spectrum gap in PC provides an opportunity to confine and control the propagation of electromagnetic waves. It can give rise to some peculiar physical phenomena, as well as wide applications in several scientific and technical areas [2–3]. Since all the novel properties as well as the application of PC rely on the existence of photonic band gaps (PBG), it is essential to design a crystal structure that can produce a large spectrum gap. Despite the tremendous progress that has been made in this direction, it remains an important issue to find a generic method that allows us to engineer a gap. In this work, as the first example of using the perturbative approach to the study of PC, we show that a perturbation analysis can provide us a simple, systematic, and efficient way to engineer an existing PBG.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Photonic Band Gap Materials, edited by C.M. Soukoulis (Kluwer Academic, Dordrecht, 1996); E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987); S. John, ibid. 58, 2486 (1987).

    Google Scholar 

  2. J.D. Joannopoulos, R.D. Meade, and J.N. Winn, Photonic Crystal-Molding the Flow of Light (Princeton University Press, Princeton, NJ, 1995).

    Google Scholar 

  3. K.M. Leung and Y.F. Liu, Phys. Rev. Lett. 65, 2646 (1990); Z. Zhang and S. Satpathy, ibid. 65, 2650 (1990); K.M. Ho, C.T. Chan, and C.M. Soukoulis, ibid. 65, 3152 (1990); S.L. McCall et al., 67, 2017 (1991).

    Article  ADS  Google Scholar 

  4. S. Fan, P.R. Villeneuve, and J.D. Joannopoulos, J. Appl. Phys. 78, 1415 (1995).

    Article  ADS  Google Scholar 

  5. M.M. Sigalas, C.M. Soukoulis, C.T. Chan et al, Phys. Rev. B 53, 8340 (1996); ibid. 59, 12767 (1999); also E. Lidorikis et al., Phys. Rev. B 61, 13458 (2000).

    Article  ADS  Google Scholar 

  6. H.Y. Ryu, J.K. Hwang, and Y.H. Lee, Phys. Rev. B 59, 5463 (1999).

    Article  ADS  Google Scholar 

  7. C.M. Anderson and K.P. Giapis, Phys. Rev. Lett. 77, 2949 (1996); also Phys. Rev. B 56, 7313 (1997).

    Article  ADS  Google Scholar 

  8. X. Zhang and Z.Q. Zhang, L.M. Li et al., Phys. Rev. B 61, 1892 (2000); ibid. 61, 9847 (2000).

    Article  ADS  Google Scholar 

  9. L.M. Li and Z.Q. Zhang, Phys. Rev. B 58, 9587 (1998).

    Article  ADS  Google Scholar 

  10. L.M. Li, Z.Q. Zhang, and X. Zhang, Phys. Rev. B 58, 15589 (1998).

    Article  ADS  Google Scholar 

  11. Z.Y. Li, X. Zhang, and Z.Q. Zhang, Phys. Rev. B 61, 15738 (2000); also Z.Y. Li and Z.Q. Zhang, Phys. Rev. B(2000). Phys. Rev. B 62, 1516 (2000).

    Article  ADS  Google Scholar 

  12. Tsan-Hang Li, C.T.Chan, and Z.Q. Zhang, unpublished.

    Google Scholar 

  13. See, e.g. J.E.G. Wijnhoven and W.L. Vos, Science 281, 802 (1998); A. Imhof and D.J. Pine, Nature 389, 948 (1997); A. Velev et al., Nature 389, 447 (1997); A. Zakhidov et al., Science 282, 897 (1998); B.T. Holland, C.F. Blanford, and A. Stein, Science 281, 538 (1998); A. van Blaaderen, Science, 282, 887 (1998); G. Subramania et al., Appl. Phys. Lett. 74, 3933 (1999).

    Article  ADS  Google Scholar 

  14. H.S. Sozuer, J.W. Haus, and R. Inguva, Phys. Rev. B 45, 13962 (1992).

    Article  ADS  Google Scholar 

  15. K. Busch and S. John, Phys. Rev. E 58, 3896 (1998).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Zhang, Z.Q., Zhang, X., Li, ZY., Li, TH., Chan, C.T. (2001). Understanding some Photonic Band Gap Problems by Using Perturbation. In: Soukoulis, C.M. (eds) Photonic Crystals and Light Localization in the 21st Century. NATO Science Series, vol 563. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0738-2_38

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0738-2_38

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6948-6

  • Online ISBN: 978-94-010-0738-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics