Skip to main content

Tunable Photonic Crystals

  • Chapter
  • 914 Accesses

Part of the book series: NATO Science Series ((ASIC,volume 563))

Abstract

In semiconductor materials electron waves propagate in a periodic potential, which originates from the atomic lattice. This modifies the dispersion relation of free electrons: A complicated bandstructure with a band gap is formed. A judicious incorporation of defects (doping) facilitates the manipulation of the electronic properties of these materials. For many decades now, it has been possible to tailor semiconductors to almost any need. The results are well-known: Almost all modern electronic devices are based on these materials, mainly on silicon. For about a decade now, the optical analogues to electronic semiconductors, the so-called Photonic Crystals (PCs), are the subject of intense international research efforts [1, 2]. PCs are materials with a periodically varying index of refraction, that facilitates the control over both propagation of light and — in case they exhibit a complete photonic band gap (PBG) — the inhibition of spontaneous emission of light from atoms and molecules. By analogy with electronic semiconductors, the periodicity of the underlying lattice of a PC should be of the same order of magnitude as the wavelength of the electromagnetic radiation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C.M. Soukoulis (Ed.), Photonic Band Gap Materials, Kluwer Academic Publishers, Dordrecht (1996)

    Google Scholar 

  2. IEEE (Ed.) special issue on Photonic Crystals. IEEE Journal of Lightwave Technology 17(11), (1999)

    Google Scholar 

  3. K.-M. Ho, C.T. Chan, and C.M. Soukoulis, Phys. Rev. Lett. 65, 3152 (1990)

    Article  ADS  Google Scholar 

  4. K. Busch and S. John, Phys. Rev. Lett. 83, 967 (1999)

    Article  ADS  Google Scholar 

  5. K. Busch, N. Vats, S. John, and B.C. Sanders, Phys. Rev. E, in press (2000)

    Google Scholar 

  6. K. Busch and S. John, Phys. Rev. E 58, 3896 (1998)

    Article  ADS  Google Scholar 

  7. J. Hama, M. Watanabe, and T. Kato, J. Phys.: Condensed Matter 2, 7445 (1990)

    Article  ADS  Google Scholar 

  8. J. E. G. J. Wijnhoven and W. L. Vos, Science 281, 802 (1998)

    Article  ADS  Google Scholar 

  9. A.A. Zakhidov et al., Science 282, 897 (1998)

    Article  ADS  Google Scholar 

  10. A. Blanco et al., Nature (London) 405, 437 (2000)

    Article  ADS  Google Scholar 

  11. P.G. de Gennes, and J. Prost, The Physics of Liquid Crystals, Clarendon Press, Oxford (1993)

    Google Scholar 

  12. S. Chandrasekhar, Liquid Crystals, Cambridge University Press (1992)

    Google Scholar 

  13. L.M. Blinov, and V.G. Chigrinov, Electro-Optic Effects in Liquid Crystal Materials, Springer, New York (1994)

    Book  Google Scholar 

  14. A.I Ioffe, and A.R. Regel, Prog. Semicond. 4, 237 (1960)

    Google Scholar 

  15. S. John, Phys. Rev. Lett. 58, 2486 (1987)

    Article  ADS  Google Scholar 

  16. S. John, Phys. Rev. Lett. 53, 2169 (1984)

    Article  ADS  Google Scholar 

  17. S. John, and R. Rangarajan, Phys. Rev. B 38, 10101 (1988)

    Article  ADS  Google Scholar 

  18. H. Kosaka et al., Appl. Phys. Lett. 74, 1370 (1999)

    Article  ADS  Google Scholar 

  19. A. Birner, U. Griming, S. Ottow, A. Schneider, F. Müller, V. Lehmann, H. Föll, and U. Gösele, Phys. Stat. Sol. (a) 165, 111 (1998)

    Article  ADS  Google Scholar 

  20. S.W. Leonard, J.P. Mondia, H.M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gösele, and V. Lehmann, Phys. Rev. B 61, R2389 (2000) 21. T. Gnielka and K. Busch, unpublished

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Busch, K., John, S. (2001). Tunable Photonic Crystals. In: Soukoulis, C.M. (eds) Photonic Crystals and Light Localization in the 21st Century. NATO Science Series, vol 563. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0738-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0738-2_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6948-6

  • Online ISBN: 978-94-010-0738-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics