Skip to main content

Towards Complete Photonic Band Gap Structures Below Infrared Wavelengths

  • Chapter
Photonic Crystals and Light Localization in the 21st Century

Part of the book series: NATO Science Series ((ASIC,volume 563))

  • 906 Accesses

Abstract

Photonic crystals are structures with a periodically modulated dielectric constant. In analogy to the case of an electron moving in a periodic potential, certain photon frequencies can become forbidden, independent of photon polarization and the direction of propagation — a complete photonic bandgap (CPBG) [1, 2]. As early as 1975, photonic crystals with such a gap have been shown to offer the possibility of controlling the spontaneous emission of embedded atoms and molecules in volumes much greater than the emission wavelength [3] and, later on, to be an important ingredient in a variety of technological applications [4]. However, as yet no two- (2D) and three-dimensional (3D) photonic crystals are available with complete bandgaps below infrared (IR) wavelengths and fabrication of photonic crystals with such a gap poses a significant technological challenge already in the near-IR [5, 6]. One faces the extreme difficulty in satisfying combined requirements on the dielectric contrast and the modulation (the total number and the length of periodicity steps). In order to achieve a CPBG below the IR wavelengths, the modulation is supposed to be on the scale of optical wavelengths or even shorter and, as for any CPBG structure, must be achieved with roughly ten periodicity steps in each direction. This task is currently beyond the reach of reactive ion and chemical etching techniques even for 2D structures, because the hole filling fraction must be rather high and the etching must be deep enough [7]. (See, however, [8] for a recent progress using holographic techniques.) Fortunately, in 3D, such a modulation occurs naturally in colloidal crystals formed by monodisperse colloidal suspensions of microspheres. The latter are known to self-assemble into 3D crystals with excellent long-range periodicity on the optical scale [9], removing the need for complex and costly microfabrication. Colloidal systems of microspheres crystalize either in a face-centered-cubic (fec) or (for small sphere filling fraction) in a body-centered-cubic (bcc) lattice [9]. Since larger sphere filling fractions favour opening of larger gaps, simple fec structures of spheres have been one of the main subjects of our investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K.M. Ho, C.T. Chan, and C.M. Soukoulis, Existence of photonic gap in periodic dielectric structures, Phys. Rev. Lett. 65, 3152 (1990).

    Article  ADS  Google Scholar 

  2. E. Yablonovitch, T.J. Gmitter, and K.M. Leung, Photonic band structure: The face-centered-cubic case employing nonspherical atoms, Phys. Rev. Lett. 67, 2295 (1991).

    Article  ADS  Google Scholar 

  3. V.P. Bykov, Spontaneous emission from a medium with a band spectrum, Sov. J. Quant. Electron. 4, 861 (1975).

    Article  ADS  Google Scholar 

  4. E. Yablonovitch, Inhibited spontaneous emission in solid-state physics and electronics, Phys. Rev. Lett. 58, 2059 (1987).

    Article  ADS  Google Scholar 

  5. T.F. Krauss, R.M. De La Rue, and S. Brandt, Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths, Nature 383, 699 (1996).

    Article  ADS  Google Scholar 

  6. S.Y. Lin et al., A three-dimensional photonic crystal operating at infrared wavelengths, Nature 394, 251 (1998).

    Article  ADS  Google Scholar 

  7. T.F. Krauss and R.M. De La Rue, Photonic crystals in the optical regime — past, present and future, Prog. Quant. Electronics 23, 51 (1999).

    Article  ADS  Google Scholar 

  8. M. Campbell, D.N. Sharp, M.T. Harrison, R.G. Denning, and A.J. Turberfield, Fabrication of photonic crystals for the visible spectrum by holographic lithography, Nature 404, 53 (2000).

    Article  ADS  Google Scholar 

  9. W.B. Rüs sel, D.A. Saville, and W.R. Schowalter, Colloidal Dispersions, Cambridge University Press, Cambridge (1995).

    Google Scholar 

  10. H. van der Lem and A. Moroz, Towards two-dimensional complete photonic band gap structures below infrared wavelengths, J. Opt. A: Pure Appl. Opt. 2, 395 (2000).

    Article  ADS  Google Scholar 

  11. A. Moroz, Three-dimensional complete photonic-bandgap structures in the visible, Phys. Rev. Lett. 83, 5274 (1999).

    Article  ADS  Google Scholar 

  12. A. Moroz, Photonic crystals of coated metallic spheres, Europhys. Lett. 50, 466 (2000).

    Article  ADS  Google Scholar 

  13. H.S. Söz üe r, J.W. Haus, and R. Inguva, Photonic bands: convergence problem with the plane-wave method, Phys. Rev. B 45, 13962 (1992).

    Article  ADS  Google Scholar 

  14. R. Biswas, M.M. Sigalas, G. Subramania, and K.-M. Ho, Photonic band gaps in colloidal systems, Phys. Rev. B 57, 3701 (1998).

    Article  ADS  Google Scholar 

  15. A. Moroz and C. Sommers, Photonic band gaps of three-dimensional face-centered cubic lattices, J. Phys.: Condens. Matter 11, 997 (1999).

    Article  ADS  Google Scholar 

  16. K. Busch and S. John, Photonic band gap formation in certain self-organizing systems, Phys. Rev. E 58, 3896 (1998).

    Article  ADS  Google Scholar 

  17. E.D. Palik et al., Handbook of Optical Constants of Solids I, Academic Press, San Diego (1991).

    Google Scholar 

  18. A. Moroz, Density-of-states calculation and multiple scattering theory for photons, Phys. Rev. B 51, 2068 (1995).

    Article  ADS  Google Scholar 

  19. W.Y. Zhang, X.Y. Lei, Z.L. Wang, D.G. Zheng, W.Y. Tam, C.T. Chan, and P. Sheng, Robust photonic band gap from tunable scatterers, Phys. Rev. Lett. 84, 2853 (2000).

    Article  ADS  Google Scholar 

  20. A. Tip, J.-M. Combes, and A. Moroz, Band structure of absorptive photonic crystals, J. Phys. A: Math. Gen. 33, 6223 (2000).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. A. Moroz, A. Tip, and J.-M. Combes, Absorption in periodic layered structures, Synthetic Metals 115, (2000) (to appear).

    Google Scholar 

  22. K.M. Leung, Optical bistability in the scattering and absorption of light from nonlinear micropar-ticles, Phys. Rev. A 33, 2461 (1986).

    Article  ADS  Google Scholar 

  23. D.S. Chemla and D.A. Miller, Mechanism for enhanced optical nonlinearities and bistability by combined dielectric-electronic confinement in semiconductor nanocrystallites, Opt. Lett. 11, 522 (1986).

    Article  ADS  Google Scholar 

  24. A. van Blaaderen and A. Vrij, Synthesis and characterization of colloidal dispersions of fluorescent, monodisperse silica spheres, Langmuir 8, 2921 (1992).

    Google Scholar 

  25. C.F. Bohren and D.R. Huffman, Absorption and scattering of light by small particles, Wiley, New York, (1984), Chap. 9, 12.

    Google Scholar 

  26. S. Fan, P.R. Villeneuve, J.D. Joannopoulos, and E.F. Schubert, High extraction efficiency of spontaneous emission from slabs of photonic crystals, Phys. Rev. Lett. 78, 3294 (1997).

    Article  ADS  Google Scholar 

  27. A.R. McGurn and A.A. Maradudin, Photonic band structures of two-and three-dimensional periodic metal or semiconductor arrays, Phys. Rev. B 48, 17576 (1993).

    Article  ADS  Google Scholar 

  28. A. Mekis, J.C. Chen, I. Kurland, S. Fan, P.R. Villeneuve, and J.D. Joannopoulos, High transmission through sharp bends in photonic crystal waveguides, Phys. Rev. Lett. 77, 3787 (1996).

    Article  ADS  Google Scholar 

  29. G. Johnson, C. Manolatou, S. Fan, P.R. Villeneuve, J.D. Joannopoulos, and H.A. Haus, Elimination of cross talk in waveguide intersections, Opt. Lett. 23, 1855 (1998).

    Article  ADS  Google Scholar 

  30. J.C. Knight, J. Broeng, T.A. Birks, and P.St.J. Russell, A photonic crystal fibre, Science 282, 1476 (1998).

    Article  Google Scholar 

  31. G. Pan, R. Kesavamoorthy, and S.A. Asher, Optically nonlinear Bragg diffracting nanosecond optical switches, Phys. Rev. Lett. 78, 3860 (1997).

    Article  ADS  Google Scholar 

  32. M. Scalora, M.J. Bloemer, A.S. Pethel, J.P. Dowling, C.M. Bowden, and A.S. Manaka, Transparent, metallo-dielectric, one-dimensional, photonic band-gap structures, J. Appl. Phys. 83, 2377 (1998).

    Article  ADS  Google Scholar 

  33. R.S. Bennink, Y.-K. Yoon, R.W. Boyd, and J.E. Sipe, Accessing the optical nonlinearity of metals with metal-dielectric photonic bandgap structures, Opt. Lett. 24, 1416 (1999).

    Article  ADS  Google Scholar 

  34. J.B. Pendry, A.J. Holden, W.J. Stewart, and I. Youngs, Extremely low frequency plasmons in metallic mesostructures, Phys. Rev. Lett. 76, 4773 (1996).

    Article  ADS  Google Scholar 

  35. A. van Blaaderen, From the de Broglie to visible wavelengths: Manipulating electrons and photons with colloids, MRS Bulletin (October) 23, 39 (1998).

    Google Scholar 

  36. W. Wen, N. Wang, H. Ma, Z. Lin, W.Y. Tarn, C.T. Chan, and P. Sheng, Field induced structural transition in mesocrystallites, Phys. Rev. Lett. 82, 4248 (1997).

    Article  ADS  Google Scholar 

  37. U. Dassanayake, S. Fraden, and A. van Blaaderen, Structure of electrorheological fluids, J. Chem. Phys. 112, 3851 (2000).

    Article  ADS  Google Scholar 

  38. E. Snoeks, A. van Blaaderen, T. van Dillen, C.M. van Kats, M.L. Brongersma, and A. Polman, Colloidal ellipsoids with continuously variable shape, Adv. Materials 12, (2000) (to appear).

    Google Scholar 

  39. D.V. Goia and E. Matijecic, Tailoring the particle size of monodispersed colloidal gold, New Journal of Chemistry 146, 139 (1999).

    Google Scholar 

  40. D. Cassagne, C. Jouanin, and D. Bertho, Hexagonal photonic-band-gap structures, Phys. Rev. B 53, 7134 (1996).

    Article  ADS  Google Scholar 

  41. M. Qiu and S. He, Large complete band gap in two-dimensional photonic crystals with elliptic air holes, Phys. Rev. B 60, 10610 (1999).

    Article  ADS  Google Scholar 

  42. M. E. Zoorob, M. D. B. Charlton, G. J. Parker, J. J. Baumberg, and M. C. Netti, Complete photonic bandgaps in 12-fold symmetric quasicrystals, Nature 404, 740 (2000).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Moroz, A. (2001). Towards Complete Photonic Band Gap Structures Below Infrared Wavelengths. In: Soukoulis, C.M. (eds) Photonic Crystals and Light Localization in the 21st Century. NATO Science Series, vol 563. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0738-2_26

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0738-2_26

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6948-6

  • Online ISBN: 978-94-010-0738-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics