Skip to main content

Part of the book series: NATO Science Series ((ASIC,volume 563))

Abstract

Conventional telecommunication optical waveguide glass fiber is the backbone of the internet revolution. This highly optimized and highly transparent waveguide consists of a higher refractive index core glass inside a lower index clad glass. Light is localized in the core by total internal reflection (TIR) at the core/clad boundary. The transmission distance between amplifiers of today’s fibers, about 80–120 km, is limited in part by the small but nonzero absorption and scattering of the fiber. Longer transmission lengths could be possible by increasing the power at each amplifier, but this is limited by optical nonlinearity of the glass in the fiber.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Broeng, S. E. Barkou, T. Sondergaard, and A. Bjarklev, “Analysis of air-guiding photonic bandgap fibers,” Opt. Lett. 25, 96–98 (2000).

    Article  ADS  Google Scholar 

  2. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).

    Article  Google Scholar 

  3. P. Yeh, A. Yariv, and E. Marom, “Theory of Bragg fiber,” J. Opt. Soc. Am. 68, 1196–1201 (1978).

    Article  ADS  Google Scholar 

  4. N. J. Doran and K. J. Blow, “Cylindrical Bragg fibers: A design and feasibility study for optical communications,” J. Lightwave Techn. LT-1, 588–590 (1983).

    Article  ADS  Google Scholar 

  5. C. M. de Sterke, I. M. Bassett, and A. G. Street, “Differential losses in Bragg fibers,” J. Appl. Phys. 76, 680 (1994).

    Article  ADS  Google Scholar 

  6. T. A. Birks, D. M. Atkin, G. Wylangowski, P. St. J. Russell, and P. J. Roberts, in Microcavities and Photonic Bandgaps: Physics and Applications, J. G. Rarity and C. Weisbuch, Eds., Kluwer, Dordrecht, Netherlands (1996), pp. 203–218.

    Google Scholar 

  7. T. A. Birks, P. J. Roberts, P. St. J. Russell, D. M. Atkin, and T. J. Shepherd, “Full 2-D photonic bandgaps in silica/air structures,” El. Lett. 31, 1941–1943 (1995).

    Article  Google Scholar 

  8. J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282, 1476–1478 (1998).

    Article  Google Scholar 

  9. T. A. Birks, D. Mogilevtsev, J. C. Knight, P. St. J. Russell, J. Broeng, P. J. Roberts, J. A. West, D. C. Allan, and J. C. Fajardo, “The analogy between photonic crystal fibres and step index fibres,” in Optical Fiber Communication Conference, OSA Technical Digest, Optical Society of America, Wash. D.C. (1999), pp. 114–116.

    Google Scholar 

  10. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547–1549 (1996); 22, 484-485 (1997).

    Article  ADS  Google Scholar 

  11. T. A. Birks, J. C. Knight, and P. St. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961–963 (1997).

    Article  ADS  Google Scholar 

  12. J. C. Knight, T. A. Birks, P. St. J. Russell, and J. P de Sandro, “Properties of photonic crystal fiber and the effective index model,” J. Opt. Soc. Am. A 15, 748–752 (1998).

    Article  ADS  Google Scholar 

  13. D. Mogilevtsev, T. A. Birks, and P. St. J. Russell, “Group-velocity dispersion in photonic crystal fibers,” Opt. Lett. 23, 1662–1664 (1998).

    Article  ADS  Google Scholar 

  14. M. J. Gander, R. McBride, J. D. C. Jones, D. Mogilevtsev, T. A. Birks, J.C. Knight, and P. St. J. Russell, “Experimental measurement of group velocity dispersion in photonic crystal fiber,” El. Lett. 35, 63–64 (1999).

    Article  Google Scholar 

  15. J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J.-P. de Sandro, “Large mode area photonic crystal fibre,” El. Lett. 34, 965–966 (1998).

    Article  Google Scholar 

  16. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light, Princeton University Press, Princeton, NJ(1995).

    MATH  Google Scholar 

  17. Steven G. Johnson and J. D. Joannopoulos, The MIT photonic-bands package, http://ab-initio.mit.edu/mpb.

  18. Alex Gaeta, School of Applied and Engineering Physics, Cornell University, private communication.

    Google Scholar 

  19. The inclusion of interstitial air holes into the triangular lattice has been suggested to increase gap bandwidths (see J. Broeng, S. E. Barkou, A. Bjarklev, J. C. Knight, T. A. Birks, and P. St. J Russell, “Highly increased photonic band gaps in silica/air structures,” Opt. Comm. 156, 240 (1998)). However, for the optimized parameter range discussed here, this modification does not result in improved perform

    Article  ADS  Google Scholar 

  20. S. E. Barkou, J. Broeng, and A. Bjarklev, “Silica-air photonic crystal fiber design that permits waveguiding by a true photonic bandgap effect,” Opt. Lett. 24, 1, 46–48 (1999).

    Article  ADS  Google Scholar 

  21. N. S. Kapany and J. J. Burke, Optical Waveguides, Academic Press, Inc., NY(1972).

    Google Scholar 

  22. J. K. Ranka, R. S. Windeier, A. J Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 run,” Opt. Lett. 25, 25–27 (2000).

    Article  ADS  Google Scholar 

  23. P. J. Bennett, T. M. Monroe and D. J. Richardson, “Toward Practical holey fiber technology: Fabrication, splicing, modeling and characterization,” Opt. Lett. 24, 1203–1205 (1999).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Allan, D.C., West, J.A., Fajardo, J.C., Gallagher, M.T., Koch, K.W., Borrelli, N.F. (2001). Photonic Crystal Fibers: Effective-Index and Band-Gap Guidance. In: Soukoulis, C.M. (eds) Photonic Crystals and Light Localization in the 21st Century. NATO Science Series, vol 563. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0738-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0738-2_22

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6948-6

  • Online ISBN: 978-94-010-0738-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics