Tunable Shear-Ordered Face-Centered Cubic Photonic Crystals

  • R. M. Amos
  • D. M. Taylor
  • T. J. Shepherd
  • J. G. Rarity
  • P. Tapster
Part of the NATO Science Series book series (ASIC, volume 563)


Large-area photonic crystals are produced by the shear-alignment of stabilized 720 nm diameter PMMA spheres dispersed in a range of liquids suspended between two parallel glass slides. An oscillatory linear shear aligns the initially small crystallites into a single domain many square centimeters in area. Reducing the shear to one lattice constant per layer produces a face-centered cubic crystal structure. This relaxes to a faulted twinned face-centered cubic structure on removal of the shear. Pure face-centered cubic crystals can be fabricated by dispersing the PMMA spheres directly in an epoxy resin. A 2-dimensional shearing scheme creates a stable face-centered cubic structure which is made permanent by exposing to UV light, thus solidifying the epoxy resin. The diffractive properties of the crystal can be monitored as the shear is applied and used to determine the crystal structure. Further, if the PMMA spheres are dispersed directly into a liquid crystal, the refractive index contrast and hence the diffraction properties can be controlled by temperature and by applying an electric field across the crystal.


Liquid Crystal Photonic Crystal Triblock Copolymer Colloidal Crystal Hexagonally Close Packed 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    E. Yablonovitch, Inhibited spontaneous emission in solid-state physics and electronics, Phys. Rev. Lett. 58, 2059 (1987).ADSCrossRefGoogle Scholar
  2. [2]
    S. John, Strong localization of photons in certain disordered dielectric superlattices, Phys. Rev. Lett. 58, 2486 (1987).ADSCrossRefGoogle Scholar
  3. [3]
    E. M. Purcell, Spontaneous emission probabilities at radio frequencies, Phys. Rev. 69, 681 (1946).CrossRefGoogle Scholar
  4. [4]
    N. W. Ashcroft and N. D. Mermin, Solid State Physics, Saunders, Philadelphia (1979).Google Scholar
  5. [5]
    N. A. Clark, A. J. Hurd, and B. J. Ackerson, Single colloidal crystals, Nature 281, 57 (1979).ADSCrossRefGoogle Scholar
  6. [6]
    P. N. Pusey and W. Van Megen, Phase behaviour of concentrated suspensions of nearly hard colloidal spheres, Nature 320, 340 (1986).ADSCrossRefGoogle Scholar
  7. [7]
    P. N. Pusey and W. Van Megen, Observation of a glass transition in suspensions of spherical colloidal particles, Phys. Rev. Lett. 59, 2083 (1987)ADSCrossRefGoogle Scholar
  8. [8]
    P. N. Pusey, W. Van Megan, P. Bartlett, B. J. Ackerson, J. G. Rarity, and S. M. Underwood, Structure of crystals of hard colloidal spheres, Phys. Rev. Lett. 63, 2753 (1989).ADSCrossRefGoogle Scholar
  9. [9]
    A. Blanco, C. Lopez, R. Mayoral, H. Miguez, F. Meseguer, A. Mifsud, and J. Herrero, CdS photoluminescence inhibition by a photonic structure, Appl. Phys. Letts. 73, 1781 (1998).ADSCrossRefGoogle Scholar
  10. [10]
    A. A. Zakhidov, R. H. Baughman, Z. Iqbal, C. Cui, I. Khayrullin, S. O. Dantes, J. Marti, and V. G. Ralchenko, Carbon structures with three-dimensional periodicity at optical wavelengths, Science 282, 897 (1998).ADSCrossRefGoogle Scholar
  11. [11]
    A. M. Kapitonov, N. V. Gaponenko, V. N. Bogomolov, A. V. Prokofiev, S.M. Samoilovich, and S. V. Gapanenko, Photonic stop band in three-dimensional SiO2/TiO2 lattice, Phys. Stat. Sol., 165, 119 (1998).ADSCrossRefGoogle Scholar
  12. [12]
    J. E. G. J. Wijnhoven and W. L. Vos, Preparation of photonic crystals made of air and Titania, Science 281, 802 (1998).ADSCrossRefGoogle Scholar
  13. [13]
    G. Subramania, K. Constant, R. Biswas, M. M. Sigalas, and K. M. Ho, Optical photonic crystals fabricated from colloidal systems, Appl. Phys. Letts. 74, 3933 (1999).ADSCrossRefGoogle Scholar
  14. [14]
    C. Dux and H. Versmold, Light diffraction from shear ordered colloidal dispersions, Phys. Rev. Letts. 78, 1811 (1997).ADSCrossRefGoogle Scholar
  15. [15]
    B. J. Ackerson and N. A. Clark, Shear-induced partial translational ordering of a colloidal solid, Phys. Rev. A 30, 906 (1984).ADSCrossRefGoogle Scholar
  16. [16]
    T. M. Slawecki, C. J. Glinda, and B. Hammouda, Shear-induced micellar crystal structures in an aqueous triblock copolymer solution, Phys. Rev. E 58, R4084 (1998).ADSCrossRefGoogle Scholar
  17. [17]
    M. D. Haw, W. C. K. Poon, and P. N. Pusey, Direct observation of oscillatory-shear-induced order in colloidal suspensions, Phys Rev. E, 57, 6859 (1998).ADSCrossRefGoogle Scholar
  18. [18]
    M. D. Haw, W. C. K. Poon, and P. N. Pusey, Colloidal glasses under shear strain, Phys Rev. E 58, 4673 (1998).ADSCrossRefGoogle Scholar
  19. [19]
    S. H. Park and Y. Xia, Macroporous membranes with highly ordered and three-dimensional interconnected spherical pores, Advanced Materials 10, 1045 (1998).CrossRefGoogle Scholar
  20. [20]
    S. H. Park and Y. Xia, Assembly of mesoscale particles over large areas and its application in fabricating tunable optical filters, Langmuir 15, 266 (1999).CrossRefGoogle Scholar
  21. [21]
    S. H. Park, D. Qin, and Y. Xia, Crystallization of mesoscale particles over large areas, Advanced Materials 10, 1028 (1998).CrossRefGoogle Scholar
  22. [22]
    R. M. Amos, T. J. Shepherd, J. G. Rarity, P. Tapster, and S. C. Kitson, Fabrication of large-area face-centered cubic hard-sphere colloidal crystals by shear alignment, Phys. Rev. E 61, 2929 (2000).ADSCrossRefGoogle Scholar
  23. [23]
    K. Busch and S. John, Liquid-crystal photonic-band-gap materials: The tunable electromagnetic vacuum, Phys. Rev. Lett. 83, 976 (1999).ADSCrossRefGoogle Scholar
  24. [24]
    K. Yoshino, Y. Shimoda, Y. Kawagishi, K. Nakayama, and M. Ozaki, Temperature tuning of the stop band in transmission spectra of liquid-crystal infiltrated synthetic opal as tunable photonic crystal, Appl. Phys. Lett. 75, 932 (1999).ADSCrossRefGoogle Scholar
  25. [25]
    G. P. Bryan-Brown, E. L. Wood, and I. C. Sage, Weak surface anchoring of liquid crystals, Nature 399, 338 (1999).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • R. M. Amos
    • 1
  • D. M. Taylor
    • 1
  • T. J. Shepherd
    • 1
  • J. G. Rarity
    • 1
  • P. Tapster
    • 1
  1. 1.DERAMalvern, WorcestershireUK

Personalised recommendations