Advertisement

3D Photonic Crystals: From Microwaves to Optical Frequencies

  • C. M. Soukoulis
Part of the NATO Science Series book series (ASIC, volume 563)

Abstract

An overview of the theoretical and experimental efforts in obtaining a photonic band gap, a frequency band in three-dimensional dielectric structures in which electromagnetic waves are forbidden, is presented.

Keywords

Photonic Crystal Filling Ratio Dielectric Sphere Refractive Index Contrast Periodic Dielectric Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    See e.g., C. Kittel, Introduction of Solid State Physics, (5th Edition, Wiley, 1976) Ch. 7.Google Scholar
  2. 2.
    See the proceedings of the NATO ARW, Photonic Band Gaps and Localization, ed. by C. M. Soukoulis, (Plenum, N.Y., 1993); Photonic Band Gap Materials, ed. by C. M. Soukoulis, NATO ASI, Series E, vol. 315.Google Scholar
  3. 3.
    For a recent review see the special issue of J. of Lightwave Technology 17, 1928-2207 (1999); and J. D. Joannopoulos, R. D. Mead, and J. N. Winn Photonic Crystals, (Princeton, 1995).Google Scholar
  4. 4.
    E. M. Purcell, Phys. Rev. 69, 681 (1946).CrossRefGoogle Scholar
  5. 5.
    E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).ADSCrossRefGoogle Scholar
  6. 6.
    N. Lawandy, in Photonic Band Gaps and Localization, ed. by C. M. Soukoulis (Plenum Publ., N.Y., 1993), p. 355Google Scholar
  7. 7.
    S. John, Phys. Rev. Lett. 58, 2486 (1987); S. John, Comments Cond. Matt. Phys. 14, 193 (1988); S. John, Physics Today 32, 33 (1991).ADSCrossRefGoogle Scholar
  8. 8.
    Scattering and Localization of Classical Waves in Random Media, ed. by P. Sheng (World Scientific, Singapore, 1990).Google Scholar
  9. 9.
    J. M. Drake and A. Z. Genack, Phys. Rev. Lett. 63, 259 (1989).ADSCrossRefGoogle Scholar
  10. 10.
    C. A. Condat and T. R. Kirkpatrick, Phys. Rev. B 36, 6783 (1987).ADSCrossRefGoogle Scholar
  11. 11.
    J. Martorell and N. M. Lawandy, Phys. Rev. Lett. 65, 1877 (1990).ADSCrossRefGoogle Scholar
  12. 12.
    G. Kurizki and A. Z. Genack, Phys. Rev. Lett. 66, 1850 (1991).ADSCrossRefGoogle Scholar
  13. 13.
    E. Yablonovitch and T. J. Gmitter, Phys. Rev. Lett. 63, 1950 (1989).ADSCrossRefGoogle Scholar
  14. 14.
    S. Satpathy, Z. Zhang, and M. R. Salehpour, Phys. Rev. Lett. 64, 1239 (1990).ADSCrossRefGoogle Scholar
  15. 15.
    K. M. Leung and Y. F. Liu, Phys. Rev. B 41, 10188 (1990).ADSCrossRefGoogle Scholar
  16. 16.
    K. M. Leung and Y. F. Liu, Phys. Rev. Lett. 65, 2646 (1990).ADSCrossRefGoogle Scholar
  17. 17.
    Z. Zhang and S. Satpathy, Phys. Rev. Lett. 65, 2650 (1990).ADSCrossRefGoogle Scholar
  18. 18.
    K. M. Ho, C. T. Chan, and C. M. Soukoulis, Phys. Rev. Lett. 65, 3152 (1990).ADSCrossRefGoogle Scholar
  19. 19.
    J. Maddox, Nature 348, 481 (1990).ADSCrossRefGoogle Scholar
  20. 20.
    E. Yablonovitch, T. J. Gmitter, and K. M. Leung, Phys. Rev. Lett. 67, 2295 (1991); E. Yablonovitch and K. M. Leung, Nature 351, 278 (1991).ADSCrossRefGoogle Scholar
  21. 21.
    C. T. Chan, K. M. Ho, and C. M. Soukoulis, Europhys. Lett. 16, 563 (1991).ADSCrossRefGoogle Scholar
  22. 22.
    H. S. Sözuer and J. W. Haus, J. Opt. Soc. Am. B 10, 296 (1993) and references therein.ADSCrossRefGoogle Scholar
  23. 23.
    P. R. Villeneuve and M. Piche, Phys. Rev. B 46, 4964 (1992); ibid 46, 4973 (1992).ADSGoogle Scholar
  24. 24.
    R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, Appl. Phys. Lett. 61, 495 (1992).ADSCrossRefGoogle Scholar
  25. 25.
    M. Plihal, A. Shambrook, A. A. Maradudin, and P. Sheng, Opt. Commun. 80, 199 (1991); M. Plihal and A. A. Maradudin, Phys. Rev. B 44, 8565 (1991).Google Scholar
  26. 26.
    A. Barra, D. Cassagne, and C. Uonanin, Appl. Phys. Lett. 72, 627 (1998) and references therein.ADSCrossRefGoogle Scholar
  27. 27.
    E. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, Phys. Rev. Lett. 67, 3380 (1991).ADSCrossRefGoogle Scholar
  28. 28.
    R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, Phys. Rev. B 44, 13772 (1991).ADSCrossRefGoogle Scholar
  29. 29.
    S. L. McCall, P. M. Platzman, R. Dalichaouch, D. Smith and S. Schultz, Phys. Rev. Lett. 67, 2017 (1991).ADSCrossRefGoogle Scholar
  30. 30.
    W. Robertson, G. Arjavalingan, R. D. Meade, K. D. Brommer, A. M. Rappe and J. D. Joannopoulos, Phys. Rev. Lett. 68, 2023 (1992).ADSCrossRefGoogle Scholar
  31. 31.
    K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, Solid State Comm. 89, 413 (1994).ADSCrossRefGoogle Scholar
  32. 32.
    E. Ozbay, A. Abeyta, G. Tuttle, M. C. Tringides, R. Biswas, M. Sigalas, C. M. Soukoulis, C. T. Chan, and K. M. Ho, Phys. Rev. B 50, 1945 (1994).ADSCrossRefGoogle Scholar
  33. 33.
    E. Ozbay, G. Tuttle, R. Biswas, M. Sigalas, and K. M. Ho, Appl. Phys. Lett. 64, 2059 (1994).ADSCrossRefGoogle Scholar
  34. 34.
    E. Ozbay, E. Michel, G. Tuttle, R. Biswas, K. M. Ho, J. Bostak, and D. M. Bloom, Optics Lett. 19, 1155 (1994).ADSCrossRefGoogle Scholar
  35. 35.
    E. Ozbay, G. Tuttle, R. Biswas, K. M. Ho, J. Bostak, and D. M. Bloom, Appl. Phys. Lett. 65, 1617 (1994).ADSCrossRefGoogle Scholar
  36. 36.
    E. Ozbay, G. Tuttle, J. S. McCalmont, M. Sigalas, R. Biswas, C. M. Soukoulis, and K. M. Ho, Appl. Phys. Lett. 67, 1969 (1995).ADSCrossRefGoogle Scholar
  37. 37.
    Ozbay, G. Tuttle, M. Sigalas, C. M. Soukoulis, and K. M. Ho, Phys. Rev. B 51, 13961 (1995).ADSCrossRefGoogle Scholar
  38. 38.
    C. T. Chan, S. Datta, K. M. Ho, and C. M. Soukoulis, Phys. Rev. B 49, 1988 (1994).ADSCrossRefGoogle Scholar
  39. 39.
    H. S. Sozuer, J. W. Haus, and R. Inguva, Phys. Rev. B 45, 13962 (1992).ADSCrossRefGoogle Scholar
  40. 40.
    T. Suzuki and P. Yu, J. Opt. Soc. of Am. B 12, 571 (1995).ADSGoogle Scholar
  41. 41.
    S. Fan, P. Villeneuve, P. Meade, and J. Joannopoulos, Appl. Phys. Lett. 65, 1466 (1994).ADSCrossRefGoogle Scholar
  42. 42.
    C. Cheng and A. Scherer, J. Vac. Sci. Tech. B 13, 2696 (1995); C. Cheng et. al. Physica Scripta T68, 17 (1996).ADSCrossRefGoogle Scholar
  43. 43.
    G. Feiertag et al. in Photonic Band Gap Materials ed. by C. M. Soukoulis (Kluwer, Dordrecht, 1996), p. 63; G. Feiertag et. al., Appl. Phys. Lett. 71, 1441 (1997).CrossRefGoogle Scholar
  44. 44.
    M. C. Wanke, O. Lehmann, K. Muller, Q. Wen, and M. Stuke, Science 275, 1284 (1997).CrossRefGoogle Scholar
  45. 45.
    S. Y. Lin et. al., Nature 394 251 (1998); J. G. Fleming and S. Y. Lin, Opt. Lett. 24, 49 (1999)ADSCrossRefGoogle Scholar
  46. 46.
    N. Yamamoto, S. Noda and A. Chutinan, Jpn. J. Appl. Phys. 37 L1052 (1998); S. Noda et. al., Appl. Phys. Lett. 75, 905 (1999); S. Noda et. al., Science 289, 604 (2000).ADSCrossRefGoogle Scholar
  47. 47.
    R. J. Hunter, Foundations of Colloidal Science (Clarendon, Oxford, 1993).Google Scholar
  48. 48.
    I. Tarhan and G. H. Watson, Phys. Rev. Lett. 76, 315 (1996); in Photonic Band Gap Materials ed. by C. M. Soukoulis (Kluwer, Dordrecht, 1996), p. 93.ADSCrossRefGoogle Scholar
  49. 49.
    W. L. Vos, R. Sprik, A. van Blaaderen, A. Imhof, A. Lagendijk, G. H. G. H. Wegdam, Phys. Rev. B 54, 16231 (1996).ADSCrossRefGoogle Scholar
  50. 50.
    Yu A. Vlasov et al., Appl. Phys. Lett. 71, 1616 (1997) and references therein.ADSCrossRefGoogle Scholar
  51. 51.
    J.E.G.J. Wijnhoven and W. L. Vos, Science 281, 802 (1998).ADSCrossRefGoogle Scholar
  52. 52.
    A. Imhof and D. J. Pine, Nature 389, 948 (1997).ADSCrossRefGoogle Scholar
  53. 53.
    B. T. Holland et. al., Science 281, 538 (1998).ADSCrossRefGoogle Scholar
  54. 54.
    A. A. Zakhidov et. al., Science 282, 897 (1998).ADSCrossRefGoogle Scholar
  55. 55.
    G. Subramania et. al., Appl. Phys. Lett. 74, 3933 (1999).ADSCrossRefGoogle Scholar
  56. 56.
    A. Velev et. al., Nature 389, 448 (1997).ADSCrossRefGoogle Scholar
  57. 57.
    A. Blanco et. al., Nature 405, 437 (2000).ADSCrossRefGoogle Scholar
  58. 58.
    O. D. Velev and E. Kaler, Adv. Mater. 12, 531 (2000), and references therein.CrossRefGoogle Scholar
  59. 59.
    M. Campbell et al., Nature 404, 53 (2000).ADSCrossRefGoogle Scholar
  60. 60.
    J. B. Pendry and A. MacKinnon, Phys. Rev. Lett. 69, 2772 (1992).ADSCrossRefGoogle Scholar
  61. 61.
    M. M. Sigalas, C. M. Soukoulis, E. N. Economou, C. T. Chan, and K. M. Ho, Phys. Rev. B 48, 14121 (1993).ADSCrossRefGoogle Scholar
  62. 62.
    M. M. Sigalas, C. M. Soukoulis, C. T. Chan, and K. M. Ho, Phys. Rev. B 49, 11080 (1994).ADSCrossRefGoogle Scholar
  63. 63.
    D. R. Smith, S. Shultz, N. Kroll, M. M. Sigalas, K. M. Ho, and C. M. Soukoulis, Appl. Phys. Lett. 65, 645 (1994).ADSCrossRefGoogle Scholar
  64. 64.
    M. M. Sigalas, C. T. Chan, K. M. Ho, and C. M. Soukoulis, Phys. Rev. B 52, 11744 (1995).ADSCrossRefGoogle Scholar
  65. 65.
    M. M. Sigalas, C. M. Soukoulis, C. T. Chan, and D. Turner, Phys. Rev. B 54, 8340 (1996); E. Lidorikis et. al., Phys. Rev. B. 61, 13458 (2000).ADSCrossRefGoogle Scholar
  66. 66.
    M. Sigalas, C. M. Soukoulis, C. T. Chan, and K. M. Ho in Photonic Band Gap Materials, ed. by C. M. Soukoulis (Kluwer, Dordrecht, 1996), p.173; M. M. Sigalas et. al., Phys. Rev. B. 59, 12767 (1999).CrossRefGoogle Scholar
  67. 67.
    S. Fan, P. R. Villeneuve and J. D. Joannopoulos, Appl. Phys. 78, 1415 (1995).CrossRefGoogle Scholar
  68. 68.
    A. Chutinan and S. Noda, J Opt. Soc. Am. B 16, 240 (1999).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • C. M. Soukoulis
    • 1
  1. 1.Ames Laboratory and Department of Physics and AstronomyIowa State UniversityAmesUSA

Personalised recommendations