Photonic Crystals from Macroporous Silicon

  • R. B. Wehrspohn
  • A. Birner
  • J. Schilling
  • F. Mueller
  • R. Hillebrand
  • U. Goesele
Part of the NATO Science Series book series (ASIC, volume 563)

Abstract

Regular, hexagonally-ordered macropore arrays have been obtained by photo-electrochemical etching of prepatterned silicon substrates. For typical pore diameters of about 1 μm, aspect ratios of about 100 have been achieved. Due to the high aspect ratio, the negligible surface roughness and the high dielectric constant of silicon, these macropore arrays are suitable candidates for photonic crystal devices. In this review, we present transmission spectra and the corresponding calculations of the bulk photonic crystals with a lattice constant of 1.5 μm having a complete photonic bandgap between a vacuum wavelength of 3 and 4 μm. By omitting some pores during the etching, photonic defect structures can be obtained, e.g., waveguides, beamsplitters or micro-resonators. As an example, a straight waveguide will be discussed and good agreement between theoretical calculations and experimental transmission spectra is shown. A confinement in the third dimension along the pore axis can be reached by modulating the pore diameter. This is achieved by applying a modulated current density during anodization and carefully taking into account diffusion processes in the pores. First transmission measurements along these modulated pores and the corresponding modeling are shown. The 3D photonic crystals have now in all three direction non-linear dispersion relations which can be tuned rather independently. For optoelectronic application, first macropore arrays with a lattice constant of 0.5 μm have been prepared, exhibiting a photonic bandgap around the interesting telecommunication wavelength region of 1.3μm.

Keywords

Porosity Microwave Hexagonal Tungsten Nitride 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Photonic Bandgaps and Localization, edited by C. M. Soukoulis, NATO ASI Series, Ser. B, Vol. 308, (Plenum Press, New York 1993).Google Scholar
  2. 2.
    J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals, (Princeton University Press, New Jersey 1995).MATHGoogle Scholar
  3. 3.
    Photonic Band gap materials, edited by C. M. Soukoulis, NATO ASI Series, Ser. E, Vol 315, (Kluwer Academic Publishers, London 1996).Google Scholar
  4. 4.
    E. Yablonovitch, T. J. Gmitter, and K. M. Leung, Phys. Rev. Lett. 67, 2295 (1991).ADSCrossRefGoogle Scholar
  5. 5.
    U. Grün ing, V. Lehmann, S. Ottow, and K. Busch, Appl. Phys. Lett. 68, 747 (1996).ADSCrossRefGoogle Scholar
  6. 6.
    A. Birner, U. Griining, S. Ottow, A. Schneider, F. Mül ler, V. Lehmann, H. Föll, and U. Gösele, Phys. Stat. Sol. (a) 165, 111 (1998).ADSCrossRefGoogle Scholar
  7. 7.
    V. Lehmann and U. Gröning, Thin Solid Films 297, 3 (1997).CrossRefGoogle Scholar
  8. 8.
    V. Lehmann and H. Föll, J. Electrochem. Soc. 137, 653 (1990).CrossRefGoogle Scholar
  9. 9.
    V. Lehmann, J. Electrochem. Soc. 140, 2836 (1993).CrossRefGoogle Scholar
  10. 10.
    S. Ottow, V. Lehmann, and H. Föll, J. Electrochem. Soc. 143, 385 (1996).CrossRefGoogle Scholar
  11. 11.
    K. Sakoda, Phys. Rev. B 51, 4672 (1995).ADSCrossRefGoogle Scholar
  12. 12.
    A. Birner, A.-P. Li, F. Müller, U. Gösele, P. Kramper, V. Sandoghdar, J. Mlynek, K. Busch, V. Lehmann, to be published in Mater. Sci. Semicon. Proces. (2000).Google Scholar
  13. 13.
    S. W. Leonard, H. M. van Driel, K. Busch, S. John, A. Birner, A.-P. Li, F. Müller, U. Gösele, and V. Lehmann, Appl. Phys. Lett. 75, 3063 (1999).ADSCrossRefGoogle Scholar
  14. 14.
    S. W. Leonard, H. M. van Driel, A. Birner, U. Gösele, P. R. Villeneuve, submitted to Opt. Lett. Google Scholar
  15. 15.
    F. Müller, A. Birner, U. Gösele, V. Lehmann, S. Ottow,a nd H. Föll, J. Porous Mater. 7, 201 (2000).CrossRefGoogle Scholar
  16. 16.
    F. Müller, A. Birner, J. Schilling, U. Gösele, Ch. Kettner and P. Hänggi, to be published in Phys. Stat. Sol. (a).Google Scholar
  17. 17.
    D. A. G. Bruggeman, Ann. Physik., Leipzig, 24, 636 (1935).ADSCrossRefGoogle Scholar
  18. 18.
    F. Abelès, Ann. de Physique 5, 596 (1950).MATHGoogle Scholar
  19. 19.
    S. Rowson, A. Chenokov, C. Cuisin, J.-M. Lourtioz, IEEE Proc.-Optoelectron. 145, 403 (1998).Google Scholar
  20. 20.
    S. W. Leonard, J.P. Mondia, H.M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gösele and V. Lehmann, Phys. Rev. B 61, R2389 (2000).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • R. B. Wehrspohn
    • 1
  • A. Birner
    • 1
  • J. Schilling
    • 1
  • F. Mueller
    • 1
  • R. Hillebrand
    • 1
  • U. Goesele
    • 1
  1. 1.Max-Planck-Institute of Microstructure PhysicsHalleGermany

Personalised recommendations